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ABSTRACT
LeveragingArti�cial Intelligence to support human decision-makers
requires harnessing the unique strengths of both entities, where
human expertise often complements AI capabilities. However, hu-
man decision-makers must accurately discern when to trust the AI.
In situations with complementary Human-AI expertise, identifying
AI inaccuracies becomes challenging for humans, hindering their
ability to rely on the AI only when warranted. Even when AI per-
formance improves post-errors, this inability to assess accuracy can
hinder trust recovery. Through two experimental tasks, we investi-
gate trust development, erosion, and recovery during AI-assisted
decision-making, examining explicit Trust Repair Strategies (TRSs)
– Apology, Denial, Promise, and Model Update. Our participants
classi�ed familiar and unfamiliar stimuli with an AI with vary-
ing accuracy. We �nd that participants leveraged AI accuracy in
familiar tasks as a heuristic to dynamically calibrate their trust
during unfamiliar tasks. Further, once trust in the AI was eroded,
trust restored through Model Update surpassed initial trust values,
followed by Apology, Promise, and the baseline (no repair), with
Denial being least e�ective. We empirically demonstrate how trust
calibration occurs during complementary expertise, highlighting
factors in�uencing the di�erent e�ectiveness of TRSs despite iden-
tical AI accuracy, and o�ering implications for e�ectively restoring
trust in Human-AI collaborations.
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1 INTRODUCTION
The integration of human expertise and Arti�cial Intelligence (AI)
in Human-AI collaboration is often driven by the recognition that
humans and machines possess complementary strengths, where the
sum can be greater than its parts. Such cases of AI-assisted decision-
making, where AI advises human decision-makers [4, 5, 67], are
becoming increasingly prevalent in domains such as medical diag-
nostics [9, 35] and criminal justice [12, 38]. However, AI systems
are fallible, leaving users with determining when to trust them. In
doing so, users may display unwarranted reliance on AI (overtrust)
or undue scepticism despite its capability (undertrust) [14, 34]. Fos-
tering appropriate trust is pivotal for collaboration, so recent works
have explored methods to calibrate users’ trust to re�ect the actual
capability of AI systems [14, 22, 29, 41].

Prior works investigating accuracy-based trust calibration typi-
cally involve systems where accuracy is evident to users through
performance feedback [66] or prior task expertise that allows users
to spot system inaccuracies [25, 43]. In practice, performance cues
may not always be available. Moreover, humans and intelligent aids
often have complementary strengths, and may oscillate between
being experts and non-experts in di�erent task facets. For example,
in a trivia game, an AI may excel at memorising vast information
to quickly identify quotes, while humans may skilfully connect evi-
dence and solve wordplay puzzles [19]. Knowing how signi�cantly
observed system accuracy shapes trust [64], a question arises: How
does trust evolve when users cannot assess AI accuracy for all tasks,
as seen in scenarios involving complementary expertise between users
and AI? During overlapping expertise, users can assess an AI’s
performance and rely on it accordingly [4, 44]. However, during
complementary expertise, it is unclear how perceived AI accuracy
in high human-expertise (HHE) tasks in�uences users’ trust in its
recommendations for low human-expertise (LHE) tasks.

Furthermore, trust calibration entails both aligning user trust
with system capabilities and appropriately rebuilding trust when
diminished. While increased AI accuracy can potentially restore
users’ trust [54, 65], this approach bears two caveats. An accu-
racy boost often fails to fully reinstate trust to pre-violation levels,
and this “recovery" method presupposes that users can detect in-
creased accuracy, which may not be true during an expertise divide.
This presents an opportunity to examine the utility of deliberate



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Pareek, et al.

interventions to restore trust in AI, which we term Trust Repair
Strategies (TRSs).

We adopt TRSs from Human-Robot Interaction (HRI), rooted in
the social psychology of interpersonal interactions, and investigate
their utility in AI-assisted decision-making. In HRI, trust repair
commonly employs three strategies [13]: expressing regret and
saying “I’m sorry" (A������) [31, 36, 56], rejecting culpability for
the error (D�����) [3, 40, 55], and conveying intentions to perform
better in future interactions (P������) [10, 17, 52]. Additionally,
inspired by research in Human-AI interaction regarding the e�ects
of simulated machine learning model updates on user trust [60], we
propose a novel TRS namedM���� U�����, which conveys that
the model underlying the AI’s decisions has been upgraded.

Addressing the aforementioned research gaps, we seek to answer
the following research questions:

• RQ1: How does perceived AI accuracy for High Human-
Expertise (HHE) tasks in�uence users’ trust in its recommen-
dations for Low Human-Expertise (LHE) tasks?

• RQ2:During complementary Human-AI expertise, how does
trust recover as accuracy improves, both with and without
deploying explicit Trust Repair Strategies (TRSs)?

To investigate these questions, we conducted a survey-based
between-subjects experiment involving 300 participants, with 150
participants assigned to each of the two tasks. In each task, partic-
ipants collaboratively classi�ed images with a simulated AI with
varying accuracy. The �rst task involved real (Familiar) and fab-
ricated (Unfamiliar) geometric shapes (inspired by Zhang et al.
[66]), while the other involved common (Familiar) and obscure
(Unfamiliar) animals (following other studies on animal identi�-
cation [29, 43, 44]). Both tasks operationalised complementary
expertise, with participants inherently being experts in identify-
ing Familiar stimuli (HHE tasks) but not Unfamiliar stimuli (LHE
tasks). While fabricating the Unfamiliar stimuli for the ����� task
strictly controlled for participants’ prior knowledge, the ������
task examined trust dynamics in a more ecologically-valid setting.

Each task had three phases: P���� 1 (high AI accuracy), P���� 2
(low AI accuracy), and P���� 3 (high AI accuracy). Between P�����
2 and 3, we manipulated the TRS between participant groups, which
included No Repair (baseline), A������, D�����, P������, and
M���� U�����. This enabled us to analyse trust recovery in P����
3 through accuracy improvement alone and in conjunction with
explicit TRSs. We measured participants’ agreement with the AI’s
classi�cation in each task trial and their overall trust after each
phase using a validated trust scale [27].

We found consistent results across both tasks. Participants relied
on perceived AI accuracy in HHE tasks as a heuristic to dynamically
calibrate their trust during LHE tasks. As the perceived AI accuracy
for Familiar stimuli deteriorated, so did participants’ reliance on
it for Unfamiliar stimuli (RQ1). Moreover, our results re-establish
how accuracy improvement leads to partial—but not total—trust re-
covery, necessitating approaches to complement it (RQ2). Notably,
M���� U����� was the most e�ective TRS, with users’ restored
trust surpassing pre-violation levels. This was followed by A����
���, rebuilding trust through the AI appearing regretful. P������,
No Repair (baseline), and D����� proved less e�ective, with users

being sceptical of the AI’s capacity to make promises, and denial of
mistakes exacerbating distrust.

This study makes the following contributions. First, we adopt
TRSs from Human-Robot interaction, and demonstrate their utility
in Human-AI interactions, reporting di�erent user behaviours. We
outline di�erences in the impact of TRSs, despite identical AI accu-
racy, discussing the role of anthropomorphism, regret, intentional
agency, deception, and the nature of promises (behavioural vs. tech-
nical) in trust restoration. Further, the inclusion of two distinct
classi�cation tasks enhances the robustness and ecological validity
of our �ndings. Second, we address a critical research gap where
users possess complementary expertise with the AI, and cannot
always gauge AI accuracy. We provide evidence that in such sce-
narios, users employ the perceived AI accuracy in Familiar (HHE)
tasks as a heuristic to calibrate their trust in it for tasks beyond
their expertise (LHE). Third, we underscore the dual nature of such
accuracy-based trust calibration – depending on the similarity be-
tween the AI’s accuracy for LHE and HHE tasks, this heuristic can
foster appropriate trust or unwarranted (dis)trust. We conclude by
discussing implications for AI systems.

2 RELATEDWORK
Trust is often de�ned as the trustor’s willingness to put themselves
at risk while expecting the other party (the trustee) to act benevo-
lently [48]. In this work, we adopt the widely utilised de�nition put
forth by Lee and See [34], who describe trust as “an attitude that an
agent will achieve an individual’s goal in a situation characterised
by uncertainty and vulnerability."

The conceptualisation of trust as a dynamic, temporal attribute
of Human-AI collaboration has been extensively examined in re-
cent studies, revealing that accuracy shapes users’ trust in AI sys-
tems [44, 54]. For example, Yu et al. [65] examined trust dynamics
over several interactions with AI and found a positive correlation
between users’ trust and perceived system accuracy. Similarly, Yin
et al. [64] report that users’ trust in a system is signi�cantly af-
fected by its observed accuracy during interactions, irrespective of
any stated accuracy. Notably, initial impressions of an intelligent
system also signi�cantly in�uence trust dynamics for the entire
interaction [15, 44], indicating that system errors early on can
cause negative trust outcomes, even if accuracy improves subse-
quently [54].

Of note is the common characteristic of the systems evaluated
in previous research – their accuracy was often readily apparent
to end-users, either by displaying explicit performance metrics or
through the users being task experts, equipping them to spot AI
errors [25, 44]. However, when indicators of an AI’s performance
are not provided, individuals tend to over-rely on the AI regardless
of its actual accuracy, even when explanations are provided [45].
In real-world scenarios, performance cues are not always available.
Furthermore, Human-AI collaborations often involve a division
of expertise, where humans excel in some aspects while the AI
in others, e�ectuating the need to collaborate with each other in
the �rst place. These �ndings present an opportunity to examine
trust dynamics in a scenario where end-users and the AI have
complementary expertise.



Trust Development and Repair in AI-Assisted Decision-Making FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

2.1 Human-AI Complementary Expertise
Complementary Human-AI expertise refers to a scenario where
both entities possess distinct strengths which need to be leveraged
appropriately to reach a state of superior performance [5]. For
example, in a trivia game, an AI can pro�ciently memorise vast
information to identify quotes faster than humans, while humans
can adeptly chain evidence and solve wordplay [19]. Another com-
pelling instance of complementary Human-AI expertise emerges
in medical diagnosis, where AI may excel at analysing medical im-
ages e�ciently while doctors emphasise with patients and obtain
a holistic understanding of their condition within the context of
their life [47]. In such cases, the role of the human decision-maker
becomes crucial—they must judge when and to what extent should
AI advice in�uence decisions.

In cases of overlapping expertise, end-users can distinguish when
an AI is an expert in a given task and subsequently �ne-tune their
dependence on it [44, 66]. However, the challenge in examining
these situations is in disentangling the e�ects of trust and prior
knowledge—if a user followed the AI’s recommendation, is it be-
cause they trust the AI or because they know the correct answer?
Importantly, performance during complementary expertise depends
not only on whether the AI’s recommendations can compensate for
low human expertise but also on whether the human can trust the
AI only when it is warranted – calibrating their trust with the AI’s
accuracy. Empirical works have so far investigated trust calibration
in situations where the users’ expertise remains constant, being
either experts or non-experts [5, 39, 44].

In our research, we take a distinct approach by examining a clear
division in task expertise between humans and AI. Unlike prior
studies that explore more balanced expertise overlaps [5, 39, 67], we
explore a scenario where humans excel in speci�c task aspects while
having little-to-no knowledge in others, enabling us to separate the
e�ects of trust and prior knowledge. We seek to understand how
perceived AI expertise in high-human expertise tasks in�uences
reliance on AI in low-human-expertise tasks, as users navigate
between areas of pro�ciency and unfamiliarity.

2.2 Trust Calibration and Repair
Poorly calibrated trust, whether stemming from unwarranted re-
liance on AI (overtrust) or undue scepticism despite AI competence
(undertrust), impacts utilisation of intelligent systems [26, 62]. In
AI-assisted decision-making, users’ trust must be appropriately cal-
ibrated so it “matches the true capabilities of automation" [14, 34].
During overlapping expertise when users can spot system errors,
a drop in AI accuracy can reduce users’ trust [65], and subse-
quent improvements to AI accuracy can contribute to trust restora-
tion [54, 65]. However, a mere accuracy boost often falls short of
fully restoring trust to pre-violation levels, and assumptions about
users’ ability to perceive accuracy improvements may not hold true,
particularly when an expertise gap exists between users and AI
such as in cases of complementary task expertise.

2.2.1 Trust Repair Strategies (TRSs). The inability of increased
accuracy to e�ectively restore trust highlights the need for utilising
explicit Trust Repair Strategies (TRSs), enabling users to restore
their lost trust when appropriate. In this work, we study TRSs
from Human-Robot Interaction (HRI) literature, namely, A������,

D�����, and P������ (see [13]), which are rooted in the social
psychology of interpersonal interactions. We examine their utility
in an AI-assisted decision-making context with complementary task
expertise, for two reasons. First, in HRI, TRSs have been examined
in interactions with physical robots, where the robot’s tangible
presence [2, 37] and facial expressions can in�uence trust [21, 51,
57]. However, Human-AI interactions di�er signi�cantly with the
AI lacking tangible features. Second, TRSs studies in HRI primarily
employ tasks with readily observable robot accuracy [20, 28, 32,
49] or explicit performance feedback [31]. However, it remains
to be seen how TRSs perform when users cannot always assess
the accuracy of intelligent agents, such as during complementary
expertise scenarios, given the strong in�uence of observed system
accuracy on trust [64].

In this work, we explore three prominent TRSs from HRI that
encapsulate the principles of trust repair:

(1) Apology: This TRS involves an expression of regret, such as
saying “I’m sorry" [31, 36, 56]. Apologies operate primarily
on an emotional level and aim to change how the trustor
perceives the trustee [16]. They function as social rituals,
elevating the social standing of the trustee and reinstating
social expectations after an error [10].

(2) Denial: This TRS involves rejecting culpability for a trust
violation [3]. Denial seeks to shift the locus of causality
associated with the violation, essentially redirecting blame
away from the trustee [40, 55]. By doing so, denial aims
to absolve the trustee of any wrongdoing, mitigating the
negative consequences of the violation [17].

(3) Promise: This TRS is an assertion made by a trustee to con-
vey positive intentions regarding future actions [52]. For
instance, saying, “I promise I will do better next time" con-
stitutes a promise. Unlike apologies and denials, promises
directly address how the trustee is expected to behave in the
future [10, 17].

Furthermore, the dynamic nature of AI systems implies that their
performance evolves over time, incorporating more data and algo-
rithmic advances into their models. Recent research in Human-AI
interaction has explored (simulated) model updates, highlighting
that initial impressions of an AI’s decision-making model can in-
�uence users’ trust in it [44, 54]. Furthermore, for users possessing
prior knowledge in a task domain, subjective trust tends to �uctuate
as the model and its outputs evolve [60]. Inspired by these �ndings,
we propose and examine a novel TRS in our work:

(4) Model Update: This strategy involves an AI system (the
trustee) conveying to the end-user that the model or al-
gorithm underlying its decision-making has been updated.
Model updates attempt to rebuild trust by showing that the
AI is actively trying to address the factors that caused the
error.

While M���� U����� and P������ attempt to rebuild trust
by conveying intentions to improve future performance, they are
normatively distinct. P������� involve the AI committing to be-
havioural changes, which can have uncertain results, while �����
������� convey technical enhancements, whose perceived impact
on the AI’s accuracy can vary.
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Please carefully review the animal below:

AI's Judgement: I am certain this animal is a Kakapo

Do you think the AI's identification is accurate?

I think it is accurate

I think it is inaccurate

How confident are you in your answer above?

Please indicate how confident you feel in your judgement on a scale of 1 (not confident at all) to 100 (fully confident).

1
Not confident at all

100
Fully confident

70

Step 1/3

Step 3/3

Stimulus 
identification 
task presented

User's agreement 
with the AI and 
their confidence 
captured

Step 2/3

AI's judgement 
presented after 
a brief delay

Figure 1: An example Low Human-Expertise (LHE) trial for the ������ task, where the AI accurately identi�es the animal,
progressively presenting each step. Note that no feedback on the AI’s performance is provided to participants. The ����� task
progressed similarly.

3 METHOD
3.1 Human-AI Collaboration Tasks
3.1.1 Task Selection and Design. For complementary Human-AI
task expertise to manifest, we required tasks featuring a distinct ex-
pertise divide between participants and the AI. The tasks needed to
contain High Human-Expertise (HHE) trials, where all participants
know the correct answer so they can judge the AI’s response accu-
racy, and Low Human-Expertise (LHE) trials, where all participants
do not know the correct answer, so we can measure their trust in
the AI by analysing their agreement with AI recommendations.
This setup allowed us to operationalise complementary Human-AI
expertise.

Considering these factors, we designed two classi�cation tasks,
one involving shapes and the other animals. In the ����� task,
inspired by Zhang et al. [66], we created an expertise divide by pre-
senting both Familiar shapes (Circle, Rectangle, Triangle), and Un-
familiar shapes created speci�cally for this study (“Pyrangle", “Scle-
ratice", “Tenectus"). Unlike Zhang et al. [66], we omitted presenting
performance feedback so participants’ knowledge of the Unfamiliar
shapes does not improve as the study progresses, maintaining the
expertise divide. Similarly, in the ������ task, participants encoun-
tered Familiar (e.g., Cat, Dog, and Horse) and Unfamiliar animals
(e.g., Ptarmigan, Markhor, and Perentie). In both tasks, participants
reported their agreement with the AI’s classi�cation. An example
task trial featuring an Unfamiliar animal is illustrated in Figure 1.

The ����� task facilitates a strongly controlled setting by fab-
ricating the Unfamiliar stimuli, ensuring zero a priori knowledge.

Further, the ������ task allows for the examination of trust dy-
namics in a more ecologically-valid setting. Overall, this dual-task
approach expands the breadth of our exploration, enabling a com-
prehensive investigation of trust dynamics.

We hypothesised that participants would correctly identify the
AI’s accuracy for Familiar stimuli (ensuring HHE), but not for
Unfamiliar stimuli (establishing LHE). For example, in an HHE trial,
participants would promptly recognise the AI’s accuracy when it
misidenti�es a Rectangle as a Circle, or an Octopus as a Snake. This
arrangement enabled us to investigate whether the AI’s perceived
accuracy for HHE tasks in�uences participants’ trust in it for LHE
tasks. It also allowed us to e�ectuate trust violations for studying
repairs later by making the AI give erroneous recommendations for
HHE tasks. Moreover, participants being non-experts for LHE tasks
ensured a need to rely on the AI, simulating real-world situations
where individuals depend on AI systems for tasks beyond their
expertise.

3.1.2 Classification Stimuli. S�����:We designed 5 visual vari-
ants of the 3 Familiar and 3 Unfamiliar shape categories, resulting
in 30 stimuli. Familiar shapes were typical Circles, Rectangles, and
Triangles, and each variant had random di�erences in visual charac-
teristics. Following Zhang et al. [66], Unfamiliar shapes were closed
2D shapes designed from Bezier curves, with speci�c combinations
of features, such as the (dis)similarity between border and �ll pat-
terns (dots, dashes, or both). To further increase visual complexity
and hinder participants from learning patterns [66], we randomly
varied category-irrelevant features, such as �ll colour, edge length,
curvature, interior angles, and pattern size and spacing. We also
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Phase 1 – High AI Accuracy Phase 2 – Low AI Accuracy Phase 3 – High AI Accuracy

Task begins

Pre- task 
questionnaire

Post- task 
questionnaire

Open- ended 
questions on trust 
evolution, repair 
effectiveness, AI 
perception
Debriefing

Demographic 
data
Dispositional 
trust

Baseline (no repair)
Apology
Denial

Promise
Model Update

Trust Repair Strategy (TRS)

Legend

Familiar

Familiar

Task ends

Trust in
AI (2)

Trust in
AI (1)

Trust in
AI (3)

(a)

(b) (d)

(c) (e)

(g)

(f)
(i)

(h)

FF F F FU U U U U FF F F FU U U U U FF F F FU U U U U

Stimulus

Unfamiliar

Unfamiliar

Correct

Wrong

Correct

Wrong

AI Judgement

F

F

U

U

Figure 2: The full experiment �ow. All participants undergo 3 ������ of classi�cation task trials, and the Trust Repair Strategy
(TRS) varies between treatments. (a): Pre-task questionnaire. (b): P���� 1 with high AI accuracy, to engender trust in the AI. (c):
Measurement of trust in AI after P���� 1. (d): P���� 2 with low AI accuracy, to erode trust in the AI. (e): Measurement of trust
in AI after P���� 2. (f): Type of TRS displayed to participants. (g): P���� 3 with high AI accuracy. (h): Final measurement of
trust in AI after P���� 3, to examine how e�ective the shown TRS was. (i): Open-ended questions (and debrie�ng for those
exposed to fabricated shapes.)

named Unfamiliar shapes to sound like plausible obscure shapes,
without disclosing geometric attributes in the name’s etymology.

A������:We chose 15 Familiar (species commonly encountered
in everyday life) and 15 Unfamiliar animals (species infrequently
heard of due to their limited population or geographic distribution).
The familiarity of animals was determined after cross-referencing
several kinds and sources of data, such as geographic spread from
Kaggle (e.g., Animal Information Repository), population size and
prevalence data from the International Union for Conservation
of Nature (IUCN) Red List 1, and public familiarity through on-
line quizzes on obscure species. This methodology ensured a robust
selection process, combining scienti�c assessments of animal preva-
lence with popular perceptions of animal familiarity. Further, we
chose Unfamiliar animals with names that did not provide clues
about their appearance or characteristics, such as selecting an ‘Aye-
Aye’ but not a ‘Red-Shanked Douc’. The full stimulus set for both
tasks is included in the supplementary materials.

3.1.3 Trust Repair Strategies (TRSs). Our operationalisation of the
four Trust Repair Strategies (TRSs) was based on the trust repair
literature in Human-Agent interaction [30, 31] and Human-Robot
Interaction (HRI) [3, 17], also drawing from the social psychology
of interpersonal trust [36, 42]. To begin, we identi�ed the core trust-
related components of each TRS – expressing regret (A������)
[10, 56], rejecting culpability (D�����) [3, 40], commitment to future
behavioural changes (P������) [17, 52], and indications of technical
enhancements (M���� U�����) [60].

1https://www.iucnredlist.org/

We established a structure for the TRS texts: they begin with the
AI acknowledging a deterioration in participants’ trust, followed
by embodying the core trust-related component of the TRS, and
end with the AI hoping that participants can trust it again. To
formulate TRSs which closely resemble AI-generated responses and
lack unwanted variability, we leveraged OpenAI’s ChatGPT (GPT-
3.5). The authors vetted the generated TRSs over several iterations,
ensuring that the texts accurately represent their repair strategy
and have a consistent structure without unintended variability.
This helped us precisely operationalise the TRSs, ensuring that
any di�erences in participant behaviour between TRSs are strictly
owing to the repair strategy. The prompt and the generated TRS
texts are included in the supplementary materials.

3.2 Experimental Design
Figure 2 presents an overview of our experimental design. For each
task, we manipulated the presence and type of TRS, giving rise to 5
experimental conditions: No Repair (baseline), A������, D�����,
P������, andM���� U�����.

3.2.1 Participants. We deployed our study on Proli�c, recruiting
�uent English speakers with an approval rating � 98%. Participants
engaged in either the ����� or ������ task, and the Human Ethics
Committee of our university approved the study. Sample size de-
termination using G*Power [18], with a medium e�ect size (f2 =
0.25), U = 0.05, and a power of 0.8 [11], indicated a minimum of 135
participants per task. We conservatively recruited 150 participants
per task to uphold reliability. Participants spent a median of 14
minutes on the survey and received US$4 for participation. Overall,
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we collected valid data from 300 participants—150 for each of the
two tasks, with 30 participants in each of the �ve conditions.

3.2.2 Procedure. Both ������ and ����� tasks progressed iden-
tically. In each task, participants were randomly assigned to one
of the �ve experimental conditions and shown a counterbalanced
sequence of classi�cation stimuli. The survey began with a pre-
task questionnaire collecting participants’ demographic details,
and presented the TiA-PtT questionnaire (Trust in Automation –
Propensity to Trust subscale [33]) which measures dispositional
trust in automation (Figure 2a). We then briefed participants that
they would collaborate with an AI on an ������/����� classi�ca-
tion task.

Following previous research on Human-AI decision-making
[8, 43, 58], we opted for a simulated AI rather than a trained ma-
chine learning model to maintain control over when the AI should
make errors, and what these errors should look like, allowing for
a precise manipulation of the AI’s performance across conditions
and participants.

The overall task comprised three sequential ������, with the AI’s
identi�cation accuracy changing between ������. The AI exhibited
high identi�cation accuracy of 80% in P���� 1 (Figure 2b), low
accuracy of 20% in P���� 2 (Figure 2d), and high accuracy of 80%
again in P���� 3 (Figure 2g). This sequence of accuracy enabled
us to attempt to foster trust in the AI (P���� 1), erode it (P���� 2),
and investigate the degree to which increased accuracy (P���� 3)
restores trust in case of complementary expertise, both with and
without deploying explicit TRSs. Further, in P���� 1 and P����
3, our simulated AI was con�gured to make its sole mistake on
trial number 7. This was necessary because �rst impressions of
intelligent systems in�uence the overall trust dynamics, with early
mistakes being costlier than those later on [44, 54].

Each ����� comprised ten classi�cation trials (Figure 2 (b, d, g)).
Figure 1 illustrates an ������ task trial, step-by-step. In each trial,
participants viewed an image stimulus, followed by a 3-second
delay before the (simulated) AI presented its identi�cation. The
delay simulated the operation of an actual AI, and allowed partici-
pants enough time to make their own identi�cation, as delaying the
presentation of AI advice can enhance critical thinking at decision-
making time [8, 46]. Participants then reported their agreement
with the AI’s classi�cation – a trust-related behavioural measure
relative to AI performance, suitable for such tasks [59]. Participants
also indicated their con�dence in their agreement on a scale of 1 to
100, with higher scores indicating greater con�dence. To minimise
potential bias from the initial slider position [53], an anchor ap-
peared only after participants clicked on the slider’s range. The task
sequence interwove Familiar (HHE) and Unfamiliar (LHE) stimuli
— enabling us to examine whether perceived AI accuracy for HHE
trials in�uences trust in the AI’s judgement for LHE trials.

In addition to the behavioural trust metric, we also deployed a
self-report measure, following studies investigating trust calibration
[62]. After each �����, participants reported their phase-level
trust in the AI on a validated 12-item 7-point Likert scale, ranging
from 1 (Not At All) to 7 (Extremely) [27] (Figure 2 (c, e, h)).

To operationalise accurate AI judgements, our AI classi�ed all
stimuli correctly. For inaccurate AI judgements, to remove ambi-
guities, the AI chose misclassi�cation labels from within the same

stimulus category, misclassifying a Familiar (Unfamiliar) stimulus
as another Familiar (Unfamiliar) one (e.g., a Rectangle as a Triangle,
and a “Scleratice" as a “Pyrangle"). This also ensured participants do
not receive accuracy cues from incorrect labels (e.g., from labelling
a “Tenectus" as a Circle).

We administered the Trust Repair Strategy (TRS) between
P���� 2 (low AI accuracy) and P���� 3 (high AI accuracy) (Fig-
ure 2f) to participants not assigned to the baseline condition. Addi-
tionally, to increase the authenticity of the AI’s model being updated
in the M���� U����� condition, we incorporated a 6-second delay
between the TRS text and P���� 3, following similar studies around
simulated model updates [60]. The task concluded after P���� 3.

We then posed open-ended questions to learn about participants’
trust evolution, factors in�uencing their perception of the AI’s ac-
curacy for Unfamiliar stimuli, reasons behind their (mis)trust in
the AI, and how they perceived the TRSs (Figure 2i). After these
questions, participants doing the ����� task were briefed about
the arti�cial nature of some stimuli. We systematically coded the
qualitative responses following a deductive thematic analysis ap-
proach [7]. We started by establishing a coding framework rooted
in themes derived from literature and our research objectives. We
gained a holistic understanding of our qualitative data for each
task, labelling participants’ responses based on our pre-established
themes.

4 RESULTS
We recruited 150 participants per task, with a mean age of 35 years
(SD = 13.01) for ������ and 34.2 years (SD = 11.85) for A������.
Participants reported their agreement with the AI’s classi�cation in
30 task trials, resulting in 4500 agreement measurements. The task
included 15 High Human-Expertise (HHE) trials (Familiar stimuli)
and 15 Low Human-Expertise (LHE) trials (Unfamiliar stimuli).
Overall, there were 2250 instances per task where we measured
participants’ agreement with the AI in LHE trials. Our intention
was not to compare agreement behaviour between HHE and LHE
trials. Instead, they played distinct roles — HHE trials fostered or
eroded users’ trust in the AI through its perceived accuracy, while
LHE trials allowed us to capture the resultant trust by examining
users’ agreement with the AI for tasks beyond their expertise.

4.1 Quantitative Findings
4.1.1 Robustness andManipulation Check. To con�rm participants’
high (low) expertise in HHE (LHE) trials, we analysed the accuracy
of their agreement with the AI’s classi�cation of Familiar and Un-
familiar stimuli, as well as the di�erence between these values. In
both tasks, participants exhibited higher accuracy in HHE trials
and lower accuracy in LHE trials, with the considerable di�erence
between these values emphasising a successful expertise divide. Par-
ticipants had an accuracy of 99.73% (SD = 0.33) for Familiar shapes
(6 errors out of 2250 responses, each made by a distinct participant,
2 per �����), and only 49.77% (SD = 14.34) for Unfamiliar shapes.
Similarly, the mean accuracy was 90.35% (SD = 10.97) for Familiar
animals (217 errors out of 2250 responses, 77 each in P���� 1 and 2,
and 63 in P���� 3), demonstrating higher familiarity, while being
only 49.17% (SD = 10.60) for Unfamiliar animals.
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Figure 3: Trust dynamics in P���� 1 and P���� 2. The e�ect of participants’ Trust in Automation (Propensity to Trust subscale)
on trust in P���� 1 for (a) S�����; (b) A������, and the e�ect of P���� 1 trust on P���� 2 trust for (c) S�����; (d) A������.
Shaded area denotes standard error (SE).
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Figure 4: Trust dynamics in P���� 3. The e�ect of P���� 1 trust on P���� 3 trust for (a) S�����; (b) A������, and the e�ect of
P���� 2 trust on P���� 3 trust for (c) S�����; (d) A������. Shaded area denotes standard error (SE).

The substantial di�erence between participants’ HHE and LHE
accuracy (49.96 points for S����� and 41.18 for A������) under-
scores an e�ective expertise manipulation. The more pronounced
divide for ������, as hypothesised, is due to the Unfamiliar stimu-
lus being fabricated, ensuring participants’ lack of prior knowledge.
Importantly, the nearly identical LHE accuracy in both tasks indi-
cates that our manipulation e�ectively produced low participant
expertise across both domains. Participants also demonstrated sig-
ni�cant con�dence in their decisions for Familiar S����� (M =
99.01, SD = 0.80) and ������� (M = 97.59, SD = 1.62), compared to
Unfamiliar ������ (M = 43.01, SD = 3.09) and ������� (M = 46.80,
SD = 4.27). This further signals higher certainty in their decisions
about Familiar stimuli compared to Unfamiliar.

Overall, within each task, participants always demonstrated
more knowledge of Familiar stimuli compared to Unfamiliar, vali-
dating the existence of an expertise divide. These results enhance
the likelihood that any observed trust dynamics result from our
experimental manipulations, rather than external factors, allowing
us to draw causal inferences.

4.1.2 Influence of Perceived Accuracy on Agreement. We sought to
investigate the in�uence of perceived AI accuracy in HHE tasks on
users’ agreement during LHE tasks. Since Familiar stimuli (HHE)
always preceded Unfamiliar stimuli (LHE) in the task sequence (Fig-
ure 2), we built a generalised linear mixed-e�ects model (GLMM)
of agreement at LHE trials with AI accuracy in the preceding HHE
trial as the predictor, for each task. This allowed us to evaluate the
impact of our predictor variable on our outcome variable (agree-
ment) with a non-normal distribution. We included participant IDs
as a random e�ect to account for individual variances in the model,
and utilised the statistical R package lme4 [6].

We observed a signi�cant di�erence in agreement at an LHE
trial based on the AI’s perceived accuracy at the previous HHE trial,
for both S����� (V = -0.472, SE = 0.034, p < 0.001) and A������ (V
= -0.576, SE = 0.064, p < 0.001) (RQ1). Participants were more likely
to trust the AI’s classi�cation of an Unfamiliar stimulus when it
accurately identi�ed the Familiar stimulus preceding it in the task
sequence, with an odds ratio of 1.62 (95% CI between 1.58 and 1.67)
for S�����, and 1.56 (95% CI between 1.50 and 1.64) for A������.
These results demonstrate that during complementary expertise,
an increase in the AI’s perceived accuracy in HHE tasks fosters
more trust in LHE tasks, and vice-versa.

4.1.3 Trust Development and Repair. In both tasks, trust signi�-
cantly decreased from P���� 1 (S�����: M = 3.94, SD = 1.04; A��
�����: M = 4.42, SD = 1.00), to P���� 2 (S�����: M = 3.20, SD =
1.05; A������:M = 3.72, SD = 1.01), t(149) = 11.0, p < 0.001 (S�����)
and t(149) = 8.44, p < 0.001 (A������). This indicated a successful
trust reduction in P���� 2 for our recovery e�orts in P���� 3. Our
goal was to examine trust dynamics across P�����, investigate how
participants’ dispositional trust in AI (TiA-PtT) moderates trust
development, and evaluate Trust Repair Strategies (TRSs). For each
task, we used the statistical R package stats to build three linear
models, one for each P����, to granularly assess the impact of
various factors.

M�������� P���� 1 T����. Through the �rst model, we in-
vestigated how participants’ P���� 1 trust is in�uenced by their
TiA-PtT. We observed a signi�cant main e�ect of TiA-PtT on trust
in P���� 1, for both S����� (V = 0.645, SE = 0.105, p < 0.001) (Fig-
ure 3a) and A������ (V = 0.681, SE = 0.122, p < 0.001) (Figure 3b). In
both tasks, participants with a higher trust in automation reported
greater trust the AI in P���� 1, where the AI with complementary
expertise exhibited high accuracy.
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Figure 5: The in�uence of Trust Repair Strategies (TRSs) on P���� 3 trust. Individual regression estimates for TRSs for (a) both
tasks. Pair-wise comparisons for (b) S����� and (c) A������. The dotted line in (b) and (c) represents mean trust during P����
1, and the associated shaded area denotes 95% con�dence intervals (CI). Error bars denote standard error (SE).

M�������� P���� 2 T����. Building on our incremental analy-
sis, in the second model we examined how participants’ P���� 2
trust is in�uenced by their P���� 1 trust and TiA-PtT. We observed
a signi�cant main e�ect of P���� 1 trust on P���� 2 trust, for both
S����� (V = 0.688, SE = 0.068, p < 0.001) (Figure 3c) and A������ (V
= 0.426, SE = 0.078, p < 0.001) (Figure 3d). Participants who trusted
the AI more during P���� 1 (high AI accuracy) also reported higher
trust during P���� 2 (low AI accuracy). Furthermore, we did not
�nd a signi�cant e�ect of TiA-PtT on P���� 2 trust in either task.
This suggests that participants’ initial trust in AI (during P���� 1)
had a more substantial impact on their trust development in P����
2 than their dispositional trust in automation.

M�������� P���� 3 T����. In our �nal model we examined
how participants’ P���� 3 trust is in�uenced by their P���� 1 trust,
P���� 2 trust, TiA-PtT, and the Trust Repair Strategy (TRS). P����
1 trust signi�cantly impacted P���� 3 trust, for both S����� (V =
0.487, SE = 0.081, p < 0.001) (Figure 4a) and A������ (V = 0.464,
SE = 0.068, p < 0.001) (Figure 4b). Similarly, P���� 2 trust also
signi�cantly impacted P���� 3 trust, for both S����� (V = 0.438, SE
= 0.075, p < 0.001) (Figure 4c) and A������ (V = 0.303, SE = 0.065, p
< 0.001) (Figure 4d). Similar to trust dynamics observed in previous
P�����, participants continued to demonstrate the in�uence of
earlier trust levels on subsequent phases. Moreover, TiA-PtT did
not impact P���� 3 trust for S����� (V = 0.040, SE = 0.090, p =
0.658), but did so for A������ (V = 0.428, SE = 0.103, p < 0.001).

TRS�. We observed a similar relative e�ectiveness of TRSs in
restoring trust across both tasks. M���� U����� and A������
were the most e�ective, surpassing P������, D�����, and No Re-
pair (baseline) (Figure 5a). We further performed a post-hoc analysis
to obtain pairwise contrasts between TRSs (Figure 5 (b, c)), and
found statistically signi�cant di�erences when comparingA������
andM���� U����� with the other TRSs, further emphasising their
greater e�ectiveness.M���� U����� was the most in�uential in
causing participants to regain trust in the AI: M���� U����� vs
Baseline (S�����: V = -0.711, SE = 0.182, p = 0.001; A������: V =
-0.715, SE = 0.187, p = 0.001), M���� U����� vs D����� (S�����: V
= -0.948, SE = 0.182, p < 0.001; A������: V = -1.056, SE = 0.187, p <
0.001), and M���� U����� vs P������ (S�����: V = -0.674, SE =
0.182, p = 0.002; A������: V = 0.747, SE = 0.187, p = 0.001). A����
��� was also signi�cantly in�uential when compared to D�����

(S�����: V = 0.554, SE = 0.182, p = 0.022; A������: V = 0.596, SE =
0.187, p = 0.014).

4.2 Qualitative Findings
At the survey’s conclusion, participants answered open-ended ques-
tions about their trust evolution through the study. We sought
insights into factors in�uencing their (dis)agreements with the
AI for Unfamiliar stimuli—classi�cation tasks for which they had
low expertise. Our focus was also on understanding the factors
in�uencing the e�ectiveness of Trust Repair Strategies (TRSs). We
systematically coded the responses following a deductive thematic
analysis approach [7]. We started by establishing a coding frame-
work rooted in themes derived from literature and our research
objectives. We gained a holistic understanding of our qualitative
data for each task, labelling participants’ responses based on our
pre-established themes. We systematically assigned responses to
themes during the coding process. The author team met repeatedly
to discuss any discrepancies and arrive at a consensus. Next, we
present our main �ndings.

4.2.1 Influence of Complementary Expertise on Trust. We found
that across both tasks, the majority of participants utilised the
AI’s classi�cation accuracy for Familiar stimuli (HHE trials) as a
heuristic to guide their trust in its output for Unfamiliar stimuli
(LHE trials); “If the AI correctly identi�ed a [Familiar] shape, I was
more likely to trust it for [Unfamiliar] shapes, and vice versa." (P13,
Baseline, S�����). Additionally, these dynamics evolved granularly,
with the AI’s accuracy for the previous Familiar stimulus strongly
impacting trust during the current Unfamiliar stimulus, a behaviour
also salient in our quantitative �ndings; “If the AI did well for the
previous [Familiar] animal, I found it more trustworthy for the current
[Unfamiliar] animal." (P28, Baseline, A������).

4.2.2 E�ectiveness of Trust Repair Strategies (TRSs). In the B����
���� condition (no repair) across both tasks, trust in the AI pri-
marily hinged upon its perceived accuracy for Familiar stimuli.
However, the increased accuracy of P���� 3 could not restore trust;
“I trusted the AI in the �rst [�����] because the shapes I knew it got
fully correct. In the next two [������], my trust was gone as the AI
made mistakes on [Familiar] shapes, and I could no longer trust it for
[Unfamiliar] shapes." (P11, Baseline, S�����). For some participants



Trust Development and Repair in AI-Assisted Decision-Making FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

in both tasks, increased accuracy partially restored trust; “I stopped
trusting it after mistakes. It got better at the end so I decided to place
more trust in it." (P32, Baseline, A������). However, despite im-
proved accuracy, participants felt the need for the AI to regain their
trust; “Especially after misidentifying things, the AI has to re-earn
my trust [...]." (P2, Baseline, A������).

We gained similar insights on the e�ectiveness of A������
across both tasks. The perception of a regretful AI helped trust
recovery; “It lost accuracy, but after it apologised and showed regret,
I trusted it again [...]." (P38, Apology, S�����). Furthermore, this
perceived regret coupled with increased AI accuracy strengthened
trust recovery; “I gave it a second chance because it seemed regret-
ful, and became more reliable." (P32, Apology, S�����). However,
for some, regained trust remained fragile and conditional on the
AI’s accuracy; “I could trust it again after it apologised. But when it
wrongly identi�ed something as easy as a cow [Familiar], I lost trust
in it." (P42, Apology, A������). Conversely, some participants felt
less in�uenced by theA������ as they could not ascribe an AI to be
capable of feeling emotions, making the A������ seem inauthentic;
“AI doesn’t have feelings to apologise so it didn’t in�uence my trust."
(P44, Apology, S�����).

Repairing trust throughD�����was largely unsuccessful across
tasks, mirroring quantitative results; “The AI telling me “I’m certain
in my accuracy..." has no impact onmy judgements about its accuracy."
(P83, Denial, S�����). Notably, participants perceiving the AI as
deceptive when it rejected culpability for its mistakes hindered
trust recovery; “I saw it make errors. The assertion that it was correct
and trustworthy despite mistakes makes it appear deceptive, and it
lost my trust." (P60, Denial, A������). Moreover, the AI’s D�����
lacked any causal attribution, which lowered participants’ trust;
“But [the AI] did not identify the common shapes correctly. Who is to
blame if not it?!" (P89, Denial, S�����).

Regarding the e�ectiveness of P������ as a TRS, participants
across tasks felt that the perception of a learning AI helped regain
trust; “[Promise] made me trust the AI more since it seemed like it was
learning." (P112, Promise, S�����). However, trust recovery through
P������ largely hinged upon whether participants could perceive
the AI as having both the intent and the agency to improve; “I trusted
the AI more because I expected it to be able to make this change and
increase its accuracy. [...] it had given a form of reassurance." (P120,
Promise, S�����). Conversely, the perceived inability of the AI to
improve hindered trust recovery; “It made me strongly distrust it as
I assumed it was doing its best already." (P108, Promise, A������). A
P������ from an AI also seemed insincere; “It did not a�ect my trust.
It’s a machine so its promise is not authentic." (P96, Promise, S�����).
Moreover, some believed that the promise of an improvement may
not translate into actual improvement; “I trusted it slightly less, just
because it said it would do better didn’t mean that it would." (P119,
Promise, S�����).

Lastly, theM����U�����message was highly e�ective across
both tasks, re�ecting our quantitative results. Participants believed
that technical upgrades could enhance the AI’s performance, restor-
ing their trust;“I trusted it almost completely again after it informed
me of technical improvements." (P127, Model Update, A������), and
“It increased my trust because I assumed the updated model would
produce more accurate judgements." (P130, Model Update, S�����).

However, for some,M���� U����� only recovered trust when sup-
plemented with enhanced performance; “It made me want to trust
the AI more, because an updated model that would produce more
accurate judgements sounded promising. The AI also seemed to do bet-
ter, so I felt more inclined to trust it." (P130, Model Update, S�����).
Interestingly, this TRS made the erring AI appear less deceptive to
participants, which fostered higher trust; “I was more likely to trust
the AI as I was no longer as suspicious of it intentionally providing
incorrect answers." (P127, Model Update, S�����).

5 DISCUSSION
5.1 Leveraging Perceived Accuracy for Trust

Calibration
Existing literature highlights the in�uence of perceived AI accu-
racy on trust, particularly in scenarios where user expertise aligns
with the AI’s capabilities [44, 54, 65]. In such cases, users can cal-
ibrate their trust in the AI, leveraging their domain expertise or
explicit performance cues. However, when tasks extend beyond
users’ expertise, assessing AI accuracy becomes challenging, and
performance feedback may not always be available. Therefore, in
this context, we sought to understand how users calibrate their
trust in AI recommendations for tasks situated beyond their own
expertise (LHE tasks).

5.1.1 Influence of Perceived Accuracy on Trust During Complemen-
tary Expertise. Our results corroborate the in�uence of perceived
accuracy on trust, empirically demonstrating that this in�uence ex-
tends to domains with complementary Human-AI expertise, where
human-decision makers do not always possess the expertise to
evaluate AI decisions. Our participants were domain experts in
HHE tasks (Familiar stimuli), allowing them to gauge AI accuracy
and accordingly adjust their agreement. However, in LHE tasks
(Unfamiliar stimuli), they had to decide how much to trust the
AI. We found that participants leveraged perceived AI accuracy in
HHE tasks as a heuristic for guiding their trust during LHE tasks.
This heuristic facilitated trust calibration – when the AI classi�ed
a Familiar shape or animal incorrectly, participants were less likely
to follow its advice for the subsequent Unfamiliar stimulus, and
vice-versa. Notably, even when participants lacked task expertise,
they did not indiscriminately trust the only signal they received
from the AI about the task, instead attempting to calibrate their
trust even in the face of uncertainty.

Moreover, our �ndings demonstrate that in scenarios with com-
plementary Human-AI expertise, trust is not solely shaped by im-
mediate experiences, but follows a cumulative process. This relates
to the concept of swift trust, which suggests that during overlap-
ping Human-AI expertise, expert users place an initial trust in the
AI, adjusting it with interaction experience [24]. However, we ob-
serve that even when users could not fully gauge the AI’s accuracy,
trust established in previous ������ continued to in�uence trust
in subsequent ������, irrespective of AI accuracy in that P����.
First impressions of AI systems can shape users’ trust [44, 54], and
our study contributes additional insights by highlighting that this
impression development extends beyond initial encounters. Future
work should explore the mechanisms underlying these persistent
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trust dynamics, and understand how users integrate and accumulate
experiences to form enduring impressions of AI.

5.1.2 Influence of Dispositional Trust (TiA-PtT) on AI Trust During
Complementary Expertise. In P���� 1, participants’ trust in our AI
was signi�cantly in�uenced by their dispositional trust in automa-
tion (TiA-PtT) for both S����� and A������ tasks, with higher
TiA-PtT leading to greater trust. By P���� 2, the in�uence of TiA-
PtT diminished, with participants’ trust becoming more contingent
on their directly observed negative experiences with the AI. In
P���� 3, the observed e�ect of dispositional trust diverged across
tasks; it remained non-signi�cant for S�����, indicating partici-
pants’ trust continued to be guided by their experiences with the
AI. However, for A������, TiA-PtT signi�cantly impacted trust –
participants’ broader attitudes towards automation in�uenced their
trust calibration. We posit that this occurred due to the controlled
nature of the S����� task, which allowed participants to more reli-
ably use their direct observations of the AI’s HHE performance for
trust calibration during P���� 3. In contrast, for the A������ task,
participants had a slightly lower accuracy in Familiar trials (90.35%)
compared to near-perfect performance in the S����� task (99.73%).
It is plausible that this subtle uncertainty in the A������ task may
have prompted participants to lean more on their dispositional trust
in automation to calibrate their trust. Future work is needed to fur-
ther explore the dynamics of trust calibration in varying contexts
of Human-AI interaction, particularly examining how di�erent task
characteristics and levels of task familiarity in�uence the reliance
on dispositional trust in automation [50].

5.1.3 Implications. These �ndings carry several implications for
the design of intelligent systems that complement the expertise
of their users. AI systems should prioritise building trust through
accurate decisions in familiar domains to foster appropriate trust
in unfamiliar domains, ultimately enhancing collaborative perfor-
mance. For instance, when an AI demonstrates similar accuracy
in both HHE and LHE tasks, designers can utilise the perceived
accuracy in HHE tasks as a catalyst for promoting appropriate trust
during LHE tasks. AI systems should recognise users’ tendency to
calibrate trust in the absence of expertise or performance feedback,
and carefully leverage this heuristic to foster appropriate trust.

On the contrary, if the AI’s accuracy markedly di�ers between
HHE and LHE tasks, this heuristic can inadvertently breed undue
(dis)trust in the AI. This underscores the dual nature of accuracy-
based trust calibration in complementary expertise scenarios. In
such cases, users must be rightfully guided to calibrate their trust in
AI, for example, by interfacing with the AI during HHE tasks where
its accuracy is representative of that in LHE tasks, so it serves as a
calibration signal. Future work can examine whether this approach
to trust calibration is more e�ective than providing explicit perfor-
mance cues, given how trust is signi�cantly impacted by observed
AI accuracy rather than stated metrics [64]. Nevertheless, promot-
ing such accuracy-based trust calibration empowers users to shed
trivial, non-collaborative heuristics, such as to “always" or “never"
trust the AI, adopting a more dynamic approach.

5.2 Impact of Explicit Trust Repair Strategies
(TRSs) on Trust Recovery

Trust in intelligent systems, much like interpersonal trust, is no-
toriously challenging to recover [24]. When users lose trust in a
system, they can be reluctant to re-engage with it [44, 54]. In our
work, through two tasks characterised by complementary expertise,
we examined how trust recovers as accuracy improves, with and
without explicit TRSs.

Notably, after the TRSs were deployed in each task, AI perfor-
mance was identical across users yet we observed signi�cant dif-
ferences in trust, showing that trust is not based on perceived
accuracy alone. Across tasks, users valued not only the AI’s accu-
racy, but also its response to errors and willingness to rebuild trust.
This emphasises how factors beyond performance in�uence overall
trust dynamics in Human-AI interaction, which we discuss next.

5.2.1 Perceptions of a Regretful AI Rebuild Trust. Human-Robot
Interaction studies present mixed evidence on the e�ectiveness of
A������ as a TRS ([13, 17]). However, during AI-assisted decision-
making, we �nd that A������ was substantially e�ective in restor-
ing trust. It was persuasive even when delivered by a non-human,
non-robot agent. This can primarily be attributed to participants
perceiving the AI as regretful for its mistakes, helping regain trust.
This behaviour is corroborated by the �nding that the expression
of regret can act as a potential catalyst for trust repair [31].

A������ primarily operates on an emotional level, aiming to
alter how the trustor perceives the trustee [16, 36]. Interestingly, de-
spite no interaction with the simulated AI beyond pre-de�ned clas-
si�cation responses, our participants attributed emotional capacity
to it when it apologised. This �nding compares with Kim and Song
[30] who investigated apology attributions (internal or external to
the intelligent agent) and trust repair. They found that internal at-
tributions were more e�ective for purposefully anthropomorphised
agents and external attributions for non-anthropomorphised agents.
In contrast, we �nd that apologies without any explicit attributions,
o�ered by an AI that was not intentionally manipulated to be an-
thropomorphised, also e�ectively restored trust. The very act of
the AI apologising prompted our participants to anthropo-
morphise it, �nding it capable of experiencing emotional
distress after violating their trust, which prompted recovery.
These observations raise intriguing questions about the causal re-
lationship between the anthropomorphism of intelligent agents
(purposeful or spontaneous) and acceptance of apologies.

5.2.2 Denying Responsibility for Mistakes Does Not Absolve the AI.
D����� was the least e�ective TRS across both tasks, back�ring
and prompting users to distrust the AI despite improved accuracy.
Trust after D����� was similar to that observed during P���� 2
with the lowest AI accuracy. Through our qualitative �ndings, we
uncover two reasons for this phenomenon. First, when the AI de-
nied responsibility for errors, participants perceived this behaviour
as deceptive. Prior literature suggests that trust can be restored
after untrustworthy behaviour, provided it is not accompanied by
deception [52]. It is plausible that following wrong classi�cations,
when the AI absolved itself of any wrongdoing, participants
interpreted this as an attempt at deceit. Second, the absence of
causal attributions of trust violations likely hindered trust recovery,
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as individuals seek to identify causes of negative outcomes [23, 63].
We did not provide a rationale behind the reduced AI accuracy in
any condition. However, D����� especially made participants ques-
tion, “if the AI is not to blame, then who is?” Future research
could investigate how providing a cause of violations alongside
D����� recovers trust.

5.2.3 Promised Technical Improvements Outperform any Promised
Behavioural Improvements. In P���� 3, M���� U����� outper-
formed P������ despite identical AI accuracy, restoring trust to
a magnitude exceeding what participants started with in P����
1. Conversely, P������ was merely as e�ective as the baseline
condition without repair. Across tasks, participants in both TRS
conditions perceived the AI as a learning entity, which aided trust
recovery. Trust recovery was also linked to participants perceiving
the AI as having both the intent and the agency to improve, a factor
known to enhance users’ trust in robots. [17]. We posit that this
in�uence also extends to Human-AI interactions, supported by our
qualitative insights. Similarly, participants who experienced trust
recovery after M���� U����� or P������ consistently ascribed
qualities of intentional agency to the simulated AI. This is further
substantiated by the �nding that in both TRSs, after deployment,
trust recovery hinged upon whether participants actually perceived
a tangible increase in accuracy.

Several plausible explanations exist for the di�erence between
M���� U����� and P������. First, the predictability of techni-
cal improvements likely superseded the emotional appeal of
a promise. Our qualitative results show that AI-delivered promises
often seemed insincere, with uncertainties about translating into
actual performance enhancements. This is further substantiated
by Albayram et al. [1], who found that users ranked “optimistic"
promises (“I promise to do better") the lowest in terms of believabil-
ity. Second, a M���� U����� was likely perceived as boosting per-
formance more reliably than a P������. Promises are contingent on
the AI’s future behaviour, introducing uncertainty, whereasM����
U������ o�er an immediate and enduring technical improvement,
establishing a more reliable bedrock for trust restoration.

Perhaps most importantly,M���� U����� may have implicitly
o�ered participants a causal attribution [55] for the trust violation—
a faulty underlying decision-making algorithm or training data. In
contrast to D����� where trust recovery was hampered by the AI
rejecting blame and appearing deceptive,M���� U����� implicitly
dissipated suspicions that the AI may be intentionally misleading
participants, making it seem less deceptive.M���� U����� in-
directly shifted the locus of causality of system errors to
external factors, removing the need to question the AI’s com-
petence [61]. Notably, the TRS least reliant on emotional appeals
portrayed the AI as more benevolent, which highlights the signi�-
cance of transparently addressing trust violations and communi-
cating the root causes of AI errors to end-users.

Together, these �ndings emphasise that trust repairs do not
necessarily require an a�ective component to be in�uential.
Technical interventions, exempli�ed by M���� U�����, can be
more potent in restoring trust compared to promises of behavioural
change. These observations invite further investigation into the
interplay between causal attributions, emotional appeals, and trust
repair strategies in Human-AI interaction.

5.3 Limitations and Future Work
Further, several factors pertaining to the nature of trust violations,
such as frequency, severity, and temporal contextwithin theHuman-
AI relationship, could moderate the e�ectiveness of trust repair
actions [36]. Future work can examine TRSs when AI errors oc-
cur at di�erent stages in the interaction. It is also plausible that
multiple trust violations may be forgiven more in certain domains.
For instance, users might exhibit lower tolerance for errors by a
robot performing repetitive tasks, such as sorting boxes with a �xed
objective, anticipating improvement over time. Conversely, users
might be more forgiving of an AI involved in fact-checking news
articles, given the ever-evolving nature of the domain. We encour-
age future work to investigate how the e�ectiveness of repairs may
vary with the characteristics of violations.

Finally, we deliberately examined two scenarios where partici-
pants possessed either full certainty or uncertainty about the right
answer, making them oscillate between self-reliance and AI reliance.
While essential for our objectives, this may limit the generalisability
of our �ndings to situations with diverse degrees of uncertainty.
Future research can explore trust dynamics in such situations, pro-
viding participants with a more substantial incentive to rely on
their intuition or knowledge alongside AI recommendations.

6 CONCLUSION
In this study, we explored trust dynamics in AI-assisted decision-
making during complementary expertise, through two tasks. We
aimed to understand how trust evolves as AI accuracy improves,
with and without explicit Trust Repair Strategies (TRSs). In both
classi�cation tasks, users leveraged perceived AI accuracy in High
Human-Expertise (HHE) trials as a heuristic to guide their trust
in it during Low Human-Expertise (LHE) trials. Further, Trust Re-
pair Strategies (TRSs) exhibited varying e�ectiveness, hinging on
AI factors such as as perceived anthropomorphism, intentional
agency, deceit, causal attributions of errors, and behavioural ver-
sus technical enhancements. While the AI apologising for poor
performance (A������) and reporting undergoing technical en-
hancements (M���� U�����) e�ectively restored trust, promising
to perform better in the future (P������) showed limited e�cacy,
and denying responsibility for errors back�red (D�����), exacer-
bating distrust. Our second task validates these �ndings, outlining
their robustness and generalisability. Together, they highlight how
trust repair is not solely dependent on perceived accuracy. Our
study o�ers valuable insights into trust dynamics in complemen-
tary task expertise scenarios, providing a foundation for designing
AI systems that leverage users’ implicit calibration of trust. It also
raises questions about the potential fragility of regained trust, and
the diminishing returns of TRSs. As AI continues to play an inte-
gral role in human decision-making, understanding trust dynamics
is pivotal for designing human-centred AI systems that engender
trust appropriately.
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A SUPPLEMENTARY MATERIALS
A.1 GPT Prompt and Generated Trust Repair

Strategy (TRS) Texts
To generate the TRS texts, the following prompt was provided to
ChatGPT (GPT-3.5):

“Design Trust Repair Strategy (TRS) texts
for a simulated AI interaction where
the user and the AI are engaged in
a shape (animal) classification task.
The AI has made some errors in its
identification, causing user trust to
decline. All TRS texts must start with
the AI acknowledging the deterioration
in users’ trust, and end with the AI
hoping the user can trust it again.
Ensure the texts are concise and suitable
for a user-facing AI interface. Keep
text length similar. Create texts for
the following TRSs:

(1) Apology: Admit to mistakes. Express
sincere regret and apologise to the
user for any inconvenience caused.

(2) Denial: Acknowledge the user’s scepticism
without directly admitting to mistakes,
and clarify that the AI gave correct
responses.

(3) Promise: Admit to mistakes. Promise
to do better and work towards enhancing
overall performance in future tasks.

(4) Model Update: Admit to mistakes. Attribute
mistakes to the machine learning model,
and inform the user of ongoing updates
to it.”

The �nal TRS texts generated using the prompt and used in the
experiment are displayed in Appendix Table 1.

A.2 Classi�cation Stimuli
A.2.1 Familiar S���� Stimuli. Familiar classi�cation tasks encom-
passed widely known geometric shapes. Each variant had random

di�erences in size, border and �ll colour, side lengths, and interior
angles (for the Triangles). The following Familiar shapes and their
visual variants were utilised in the study:

(1) Circles (Fig 6(a))
(2) Rectangles (Fig 6(b))
(3) Triangles (Fig 6(c))

A.2.2 Unfamiliar S���� Stimuli. Unfamiliar shapes were arti�-
cially created for this study. To further increase the visual com-
plexity and make it challenging for users to learn patterns for Fake
shapes, we randomly varied category-irrelevant features, such as
�ll colour, edge length, edge curvature, interior angles, and pattern
size and spacing. The following Unfamiliar shapes and their visual
variants were utilised in the study:

(1) Scleratice (Fig 7(a)) — 4 sided-shape, border and shape �ll
have the same pattern (only dots, only dashes, both dots and
dashes).

(2) Tenectus (Fig 7(b)) — 4 sided-shape, border and shape �ll
have di�erent patterns (one dotted one dashed).

(3) Pyrangle (Fig 7(c)) — 5 sided-shape, border and shape �ll
have the same pattern (only dots, only dashes, both dots and
dashes).

A.2.3 Familiar A����� Stimuli. In selecting the 15 Familiar ani-
mals, we chose widely-recognised, commonly-encountered, and
highly familiar species that are known to a broad audience, some
of which are also commonly kept as household pets. The Familiar
animals utilised in the study are illustrated in Figure 8.

A.2.4 Unfamiliar A����� Stimuli. We chose 15 Unfamiliar animals
(species infrequently heard of due to their limited population or geo-
graphic distribution) after cross referencing multiple online sources
of data on endemic and rare animals, those with a limited geograph-
ical spread, and those which are considered to be uncommonly
known or exotic. We also selected Unfamiliar animals with names
that did not provide clues about their appearance, characteristics,
or colour, such as selecting an ‘Aye-Aye’ but not a ‘Red-Shanked
Douc’. The Unfamiliar animals utilised in the study are illustrated
in Figure 9.
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Table 1: The four trust repair strategies with the core trust-related component that they are rooted in highlighted. Each
participant saw only one TRS after P���� 2 (low AI accuracy).

Trust Repair Strategies (TRSs)

Apology “It seems like you have been mistrusting my recent assessments. I’m sorry for any mistakes I have made. I apologise for any inconvenience caused by
these mistakes and I hope you can trust me again in the upcoming tasks."

Denial “It seems like you have been mistrusting my recent assessments, but I’d like to clarify that I did identify the shapes (animals) correctly. I’m confident I
chose the right responses and I hope you can trust me again in the upcoming tasks."

Promise “It seems like you have been mistrusting my recent assessments. I promise to do be�er and improve my overall performance in shape (animal) identification,
and I hope you can trust me again in the upcoming tasks."

Model Update “It seems like you have been mistrusting my recent assessments. My performance is closely tied to my machine learning model. This model has just been
updated, and I hope you can trust me again in the upcoming tasks."

(a)

(b)

(c)

Figure 6: Familiar shapes and their visual variants. (a) Circles; (b) Rectangles; (c) Triangles.

(a)

(b)

(c)

Figure 7: Unfamiliar shapes and their visual variants. (a) Scleratice; (b) Tenectus; (c) Pyrangle.
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Figure 8: Familiar animals utilised in the study.

Figure 9: Unfamiliar animals utilised in the study.


