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Figure 1: Diagrammatic overview of the five multi-agent Large Language Model (LLM) interface variants (V1–V5) used as
exploratory probes in our study. Each variant instantiates a distinct combination of transparency-related design dimensions
to surface multi-agent reasoning to the user. V1 (Final Answer) shows only the system’s final decision, with no agent-level
visibility. V2 (Agents Answer) displays each agent’s individual answer alongside the majority outcome. V3 (Agents Explain)
extends this by surfacing a brief rationale from each agent, before presenting the majority decision. V4 (Agents Critique)
introduces a dedicated critic agent who evaluates each agent’s response, followed by a summarised final answer. V5 (Agents
Debate) presents a multi-turn inter-agent discussion, where initially disagreeing agents deliberate and converge on a consensus
answer. Together, these variants span a range of process visibility and aggregation mechanisms found in emerging multi-agent
LLM systems. We examine how these differences shape user perceptions of transparency and trustworthiness, and the tensions
that arise between increased system visibility and its cognitive costs, across different task types.

Abstract
Asmulti-agent Large LanguageModels (LLMs) gain traction, design-
ers must consider how to surface their internal reasoning in ways
that foster appropriate trust. We present a design-led, qualitative,
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comparative structured observation study, exploring how users in-
terpret and evaluate transparency in multi-agent LLMs. Participants
interacted with five interface variants, each instantiating different
combinations of transparency-related design dimensions, across
two task types: information-seeking and logical reasoning. We sur-
face participants’ mental models, the cues they interpret as signals
of transparency and trustworthiness, and how they weigh the costs
and benefits of increasing process visibility. Transparency needs
were dynamic and context-sensitive, with the ideal “Goldilocks”
(i.e., “just right” transparency) level shaped jointly by task demands,
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interface affordances, and user characteristics such as task exper-
tise and dispositional AI trust. We highlight tensions between pro-
cess visibility, information sufficiency, and cognitive effort, and
synthesise these insights into design considerations for aligning
transparency with user needs in future multi-agent LLM interfaces.

CCS Concepts
• Human-centered computing→ HCI theory, concepts and
models; Collaborative interaction.
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1 Introduction
An effective collaboration between humans and Large Language
Models (LLMs) depends upon both the model capability and its
end-users’ ability to accurately calibrate their trust in the model
[84]. In classical AI systems, trust calibration has been explored
through methods aiming to enhance AI transparency, typically
via explanations [67, 69], confidence scores [107], or uncertainty
indicators [41, 81]. However, these strategies often fall short when
applied to LLMs, which generate fluent, open-ended, and seemingly
confident outputs that can appear coherent even when incorrect [38,
42, 97]. As a result, transparency-based trust calibration techniques
originally developed for classical AI systems may not align with
how users interpret or engage with the outputs of generative LLMs,
leaving Human-Computer Interaction (HCI) and trust calibration
efforts to play catch-up.

In parallel, recent work in machine learning and natural lan-
guage processing has introduced a new class of LLMs —multi-agent
LLMs — which comprise multiple AI models that collaborate to
reach a more accurate final answer, through mechanisms such as
sampling answers and voting, inter-agent deliberation, and casting
agents into roles (e.g., a ‘critic’) to encourage divergent reasoning
[53, 58, 95]. While primarily developed to boost model performance,
multi-agent systems inherently embody a variety of epistemic sig-
nals, such as agent disagreement, diverse reasoning paths, critique,
and consensus, features that could also function as user-facing
transparency and trustworthiness signals in such systems.

A small but growing body of HCI research has begun exploring
this space, for example, introducing a ‘devil’s advocate’ agent into
group decision-support reduced overreliance in some cases [18],
while assigning agents with specialised roles such as ‘critics’ and
‘summarisers’ helped users recognise diverse opinions [50]. Despite
such promising initial signals, the literature remains scattered and
exploratory. We still lack a principled understanding of how users

interpret, engage with, and desire multi-agent reasoning to be pre-
sented in end-user interfaces. A key part of this interpretive process
involves users’ mental models — their internal representations of
how a system works, which guide their expectations, understand-
ing, and trust [29, 39, 63]. In systems as complex as multi-agent
LLMs, mismatches between user mental models and actual system
behaviour could lead to a range of issues, such as miscalibrated
trust, misplaced expectations, or inaccurate perceptions of system
capability. This raises questions: how do users make sense of multiple
agent responses? What epistemic cues (e.g., disagreement, critique,
consensus) do they attend to when evaluating transparency and trust-
worthiness? And how should multi-agent transparency be designed to
support trust calibration? As multi-agent architectures grow more
common, these questions become increasingly central for their
thoughtful, human-centred design.

In this work, we treat multi-agent reasoning not just as a per-
formance enhancing back-end technique, but as a novel design
material for transparency in multi-agent LLM interfaces. We pose
the following research questions (RQs):

• RQ-1 -MentalModels:How do users conceptualise a multi-
agent LLM system, and how do these mental models shape
their interpretation of its outputs?

• – RQ-2a - Affordances as Signals: What affordances (e.g.,
agent visibility, reasoning diversity, consensus, disagree-
ment) of multi-agent LLM systems do users interpret as
cues for transparency and trustworthiness?

– RQ-2b - Operationalisation Preferences: What are
users’ preferences for how multi-agent reasoning should
be structured, surfaced, and summarised to gauge system
trustworthiness?

• RQ-3 - Role of Task Type: How do users’ transparency
needs vary across different tasks, such as information-
seeking versus reasoning-based tasks?

To answer these RQs, we conducted an in-person, design-led
qualitative lab study. Our approach was inspired by Mackay and
McGrenere [60]’s Comparative Structured Observation (CSO), and
card-sorting in design research [25]. We first reviewed existing liter-
ature on multi-agent LLMs to identify patterns in how multi-agent
transparency is surfaced and presented. This yielded seven design
dimensions (e.g., Number of Agents, Role Specialisation, Reasoning
Visibility, Disagreement & Critique), from which we formalised a
multi-agent transparency design space. We then instantiated this
space by designing five mock multi-agent interfaces, each opera-
tionalising a distinct combination of the identified dimensions. Our
participants engaged with all five interfaces in both an information-
seeking and reasoning task, and completed comparative sorting
and reflection activities. The interfaces served as epistemic probes
during our user study, used to prompt participant reflection and
elicit rich, comparative insights into how they interpret and evalu-
ate multi-agent transparency (e.g., why one variant appears more
trustworthy than another).

Our findings reveal that users actively interpret the epistemic
signals embedded in multi-agent systems — such as disagreement,
critique, and consensus — as cues for deciding when and how much
to trust the system. These cues often gave rise to heuristics: for in-
stance, participants frequently interpreted the number of agents as a
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proxy for system reliability, or took visible agent consensus as a sign
of accuracy. However, these heuristics also proved double-edged:
while they offered intuitive shortcuts for assessing trustworthiness,
they could also create a false sense of reliability when these signals
do not reflect the true quality of the multi-agent reasoning. We
highlight the trade-offs these cues introduce and discuss challenges
they pose for designing multi-agent transparency.

Furthermore, participants did not desire complete transparency
into all agent reasoning. Instead, they sought contextually sufficient
transparency: just enough information to support their current
decision-making without incurring undue mental workload. Across
tasks, users consistently gravitated towards the interface that of-
fered a “Goldilocks” (i.e., “just right”) level of transparency — where
the informational value of the interface was balanced against their
cognitive effort. Interestingly, this choice was dynamic, shaped by
task type, interface affordances, and individual dispositions. For
instance, what felt sufficient in a simple fact-checking task often
felt inadequate in a complex reasoning task. We highlight this cen-
tral cost–benefit tension in designing multi-agent transparency:
participants appreciate signals of internal system deliberation (e.g.,
disagreement, diverse rationales) to gauge reliability, but do not want
to sift through all the deliberation. They also expressed a desire for
progressive disclosure: being able to start with a simple output and
request deeper transparency (such as through collapsible interface
toggles) when needed. Our findings raise design-oriented hypothe-
ses and questions that future work can test more systematically.
We make the following theoretical contributions:

• A foundation for theorising the determinants of user
trust in multi-agent LLMs.We provide a rich account of
how users interpret, form mental models around, and desire
multi-agent reasoning. We identify key epistemic cues that
users instinctively rely on to assess trustworthiness, along
with the risks and miscalibrations these cues can produce,
and provide suggestions on how to de-risk them. By surfac-
ing which design elements users attend to and why, our find-
ings lay the conceptual groundwork for future hypothesis-
driven studies to test how specificmulti-agent configurations
influence trust calibration and perceived transparency.

• A reconceptualisation of transparency as sufficiency,
not volume. We rethink transparency in multi-agent LLMs
not as a binary (transparent vs. opaque), nor as a linear
“more-is-better” dial, but rather as sufficiency judgement. We
show that both too much and too little transparency can un-
dermine trust, challenging the assumption that more system
visibility is always better.

• Design tensions between visibility, interpretability,
and cognitive effort. We make explicit the core tensions
between users’ desire for process visibility, interpretability,
and cognitive effort, arguing that multi-agent transparency
must be designed in a manner that is task-sensitive, cog-
nitively manageable, and responsive to users’ information
needs in the moment.

• Methodologically, we demonstrate the use of Compara-
tive Structured Observation [60], with interfaces used as
epistemic probes, as a promising approach for early-stage,

design-led exploration of user needs in novel AI system de-
signs, prior to formal hypothesis testing.

2 Related Work
To design for transparency and (appropriate) trustworthiness in
LLMs, it is essential to examine both how users perceive, inter-
pret, and act on AI outputs, and the technical paradigms that shape
how AI agents can think, deliberate, and generate responses. In the
sections that follow, we first review prior work on trust, reliance,
and transparency in traditional (non-LLM) human-AI collabora-
tion, and then outline the unique transparency and trustworthiness
challenges posed by the more fluent and conversational LLMs. We
then discuss multi-agent reasoning techniques, originally devel-
oped as a strategy to boost raw LLM performance, and highlight
their untapped potential as user-facing transparency mechanisms
in human-LLM interaction contexts.

2.1 Trust and Transparency in AI-Assisted
Decision-Making

Trust is a foundational concept in human-AI collaboration. It shapes
whether, when, and how users engage with AI-generated outputs,
especially in contexts with risk and uncertainty [49, 73]. Following
Lee and See [49], we define trust as “an attitude that an agent will
help achieve an individual’s goals in a situation characterised by
uncertainty and vulnerability.”

In AI-assisted decision-making, the effectiveness of collabora-
tion hinges not only on the AI’s capabilities, but also on whether
users know when and how much to trust the AI system [84]. This
process, known as trust calibration, refers to regulating human
trust to align with AI competence, i.e., trusting it when warranted
and withholding trust when it is likely to err. Miscalibrated trust,
whether as over-trust (trusting incorrect AI outputs) or under-trust
(not trusting correct AI outputs), can lead to poor decision qual-
ity and negate the very benefits of AI-assisted decision-making
[5, 67, 92]. Lee and Moray [48] identify three core determinants of
trust: (1) Process: pertains to conveying the AI’s rationale behind its
decisions in order to foster trust, often facilitated through explana-
tions or rationales; (2) Performance: tied to the perceived accuracy
of the AI, which may differ from actual system accuracy; and (3)
Purpose: deals with the perceived intentions behind designing the
system and the intent of the system, whether aligned with users’
goals or aiming to deceive them.

2.1.1 Transparency as a Mechanism for Trust Calibration. Building
on these determinants, AI transparency has emerged as a central
design strategy to support trust calibration. Transparency, in this
context, refers to the extent to which users can inspect, understand,
or contextualise an AI’s behaviour to help them make informed
trust judgements [89, 106]. Following prior work on “just-enough”
explanation design, we operationalise perceived transparency as
the felt sufficiency of process insight — i.e., whether the informa-
tion provided about how an AI answer was generated feels right
for the user’s goal and context [35, 43, 45]. This framing aligns
with research showing that users respond best to explanations that
balance completeness with cognitive usability [43, 45]. Without
adequate transparency into the operations of an AI system, users
lack the necessary cues to gauge whether AI is acting accurately,
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benevolently, and in alignment with their goals — key elements
that underpin trust [49].

Transparency mechanisms typically target two aspects of AI
systems: their performance and their process. Performance trans-
parency focusses on surfacing cues about how accurate or reliable
the AI is, through accuracy scores [32, 102, 104], confidence es-
timates [107], or uncertainty markers [7, 41, 81], while process
transparency focuses on making the AI’s decision-making more
interpretable, often via explanations [3, 67, 69] and insights into
model internals [66, 70].

However, these approaches are not without limitations. The
presence of explanations can lend (unwarranted) credibility to (in-
correct) AI outputs, or anchor users to the AI output and discourage
critical thinking, highlighting “pitfalls of explainability” [5, 23, 67].
Similarly, system performance indicators are not always interpreted
correctly and can be overshadowed by subjective perceptions of AI
reliability during a task, which may diverge from reality [102, 103].
Even uncertainty information, which is often intended to serve
as a proxy for (expected) AI performance, can have unintended
effects: for instance, being interpreted as a signal of transparency
and honesty by the AI designers, thereby boosting trust (even when
unwarranted) [7, 36, 65].

2.1.2 Transparency Challenges in LLMs. The limitations of conven-
tional AI transparency strategies become especially pronounced
in the context of Large Language Models (LLMs). Generative AI
systems like LLMs represent a paradigm shift in human-AI interac-
tion — from terse predictions by traditional classification models to
fluent and seemingly confident natural language responses. While
this shift offers new possibilities, it also hinders users’ ability to as-
sess trustworthiness. Prior research suggests that LLM fluency can
mask its response inaccuracies, making it harder for users to deter-
mine when to trust or question the model’s output [38, 42, 97]. This
emerging interaction paradigm challenges traditional approaches
to AI transparency and trustworthiness. Mechanisms such as con-
fidence scores, uncertainty indicators, or post-hoc explanations,
originally developed for classification or retrieval-based models,
may no longer align with how users interpret or engage with open-
ended LLM responses. Moreover, the longstanding assumption that
more transparency improves reliance may not even hold in LLM con-
texts: users’ transparency needs may differ depending on the nature
of the task. For instance, in some cases, users may simply want a
definitive answer from the LLM and ignore auxiliary transparency
information; in others, they may value deeper insight into how the
response was generated and why.

Although recent HCI studies have begun exploring trust and
reliance in LLM-based systems [30, 31, 42, 91], much of this work
has borrowed transparency boosting strategies and design cues
from traditional human-AI interaction contexts, such as natural
language or visual signals for uncertainty [41, 90], explanations,
source citations, and internal contradictions [40, 42]. However, little
is known about the cues users naturally notice, seek, or interpret
as signals of transparency and trustworthiness in LLM outputs,
highlighting a pressing need to understand users’ transparency
needs and preferences in such novel decision-making contexts.
This study adopts a discovery-oriented approach to examine how
users conceptualise and engage with transparency signals in LLM

interfaces. Taking a bottom-up approach, we focus on the cues,
features, and reasoning strategies that shape users’ interpretations,
with particular attention to multi-agent settings where epistemic
signals such as debates, critiques, and consensus may emerge.

2.2 Multi-Agent Reasoning Structures
Recent work in Large Language Models (LLMs) has introduced sys-
tems composed of multiple agents — either instantiated as distinct
models or as role-specialised versions of the same model — that
collaborate to reason over a shared problem. These multi-agent
approaches aim to improve performance and robustness by intro-
ducing diversity in how reasoning is generated, evaluated, and
synthesised. Traditionally, multi-agent systems are defined as “a
collection of, possibly heterogeneous, computational entities, having
their own problem-solving capabilities and which are able to interact
in order to reach an overall goal” [64]. In the context of human-
centred AI, this concept has been adapted to include systems where
agents exhibit attributes such as inter-agent collaboration, commu-
nication, and coordination [15, 20, 51]. In our work, we follow this
framing to study multi-agent LLM systems designed for decision-
support, where agents collectively reason, critique, or consolidate
their outputs to assist users.

In NLP and ML research, multi-agent reasoning methods have
shown promise in boosting AI performance on tasks such as maths
word problems and multi-step inference. For instance, Du et al. [22]
found that multiple agents debating the final answer to arithmetic
problems outperformed single-agent baselines. Similarly, Li et al.
[53] demonstrated that simply scaling up the number of sampled
agents and choosing the final answer through voting improved
accuracy. Recent evaluations have also explored multi-persona
prompting, casting AI agents into roles such as “angel vs. devil”
or an overseeing “judge” to encourage more divergent reasoning
and accurate solutions [55, 82]. While these approaches aim to
improve LLM reasoning performance, the very mechanisms they
employ, such as simulated deliberation, agent disagreement, or jury-
like consensus, may shape users’ perceptions of trustworthiness,
perhaps even in ways that are not aligned with actual model accu-
racy. This underscores the need to examine how such multi-agent
structures could function as user-facing transparency mechanisms.

2.2.1 Multi-Agent Reasoning in HCI. A handful of recent HCI stud-
ies have begun exploring how AI systems involving multiple rather
than a single agent might impact human-AI interaction, though
this work remains scattered and exploratory. For example, Chiang
et al. [18] introduced a “devil’s advocate” agent into an AI-assisted
group decision-making process, finding that adversarial question-
ing by this agent can reduce overreliance in some cases. Similarly,
Swoopes et al. [87] presented users with ten different AI responses
to the same query and found that users appreciated the ability to
cross-verify responses, though how this impacted users’ trust or
decision performance was not studied. Other relevant works have
implemented multi-agent systems where they give agents distinct
roles, such as a ‘summariser’, ‘critic’, and ‘redundancy-checker’ [50],
and found how inconsistencies within multiple AI responses shape
perceived AI competence [51].

Despite these promising signals, there is currently no unified
framework for understanding how multi-agent reasoning should
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be operationalised, structured, or surfaced in human-AI interfaces.
Multi-agent systems inherently generate rich epistemic signals,
such as disagreement, consensus, and visibility into diverse agent
rationales, that likely shape user perceptions of transparency and
trustworthiness in understudied ways. Existing work tends to inves-
tigate isolated interaction patterns or specific agent configurations
without systematically connecting them to user goals, transparency
needs, and perceived trustworthiness. To date, no work has sys-
tematically examined how different structures of multi-agent rea-
soning affect perceived transparency and trustworthiness, or what
users’ mental models of multi-agent LLMs are like — internal rep-
resentations of how a system works that can guide expectations,
understanding, and trust [29, 39, 63]. We address this gap by treat-
ing multi-agent reasoning structures as a novel design material for
transparency. We ask: how do users interpret these structures? What
epistemic signals do they rely on to gauge trustworthiness, and what
additional information do they seek? Is one level of transparency more
desirable than others — for instance, should interfaces surface every
agent’s reasoning path, or present only a distilled consensus?

2.3 Task Characteristics and Their Influence on
Transparency Needs

Task-level characteristics such as complexity and uncertainty can
strongly influence how users engage with AI systems. Prior work
has distinguished between fact-based, information-seeking tasks
and more open-ended, reasoning-based tasks, inherently varying
along dimensions such as complexity, ambiguity, uncertainty, and
verifiability [4, 16, 76, 92]. For example, Salimzadeh et al. [76] clas-
sified tasks as diagnostic (low uncertainty, more factual) and prog-
nostic (high uncertainty, more inferential), showing how these dif-
ferences impacted reliance on AI. In other HCI studies, tasks along
this spectrum have ranged from fact-based general knowledge ques-
tions, for example, “Has Paris hosted the Summer Olympics more
times than Tokyo?” [42] or “Which country in Europe has the most
Nobel Laureates in science?” [51] to more cognitively demanding,
LSAT-style logical reasoning tasks [5, 8].

Building on this, we posit that users’ transparency needs may
also vary across task types: for information-seeking tasks, surfac-
ing agent consensus might be most desirable, whereas exposing
agent debate and critique could help users navigate the ambiguity
in reasoning-based tasks. Therefore, in this work, we explore both
information-seeking and reasoning-based tasks as a lens through
which to understand user expectations and transparency prefer-
ences in multi-agent systems.

3 Deriving A Design Space for Surfacing
Multi-Agent Reasoning

Multi-agent LLM systems vary widely in how they surface internal
reasoning — exposing multiple agents, disagreement, critique, or
collaborative deliberation. While these features offer rich epistemic
signals, it remains unclear how their presentation shapes users’
perceptions of transparency and trust. To address this, we systemat-
ically mapped patterns in existing multi-agent LLM interfaces in the
literature, and distilled a set of design dimensions that characterise
how reasoning is exposed to end users. This section outlines (1) our
scoping and screening process for relevant literature, (2) the core

dimensions that emerged, and (3) how these dimensions informed
the construction of interface used as our study stimuli.

3.1 Gathering Design Requirements for
Multi-Agent Interfaces

Following prior HCI work that derives design considerations
through targeted literature analyses [9, 19, 71], we conducted
a design-oriented scoping review of multi-agent LLM systems
in literature. Our goal was to uncover recurring interface pat-
terns, ensemble configurations, and reasoning structures that
shape how such systems expose their inner workings to end
users. We began with a targeted keyword search in the ACM
Digital Library as it indexes key HCI venues (e.g., CHI, CSCW,
IUI, FAccT), using the following query: (“multi-agent” OR
“multiple agents”) AND (“LLM” OR “large language model”)
AND (“deliberation” OR “critique” OR “debate” OR
“rationale” OR “collaboration”). This returned 691 results
(687 published between 2022-2025). After restricting to full research
articles and excluding extended abstracts, magazine articles, and
workshop papers, 235 remained. We manually screened titles and
abstracts for relevance, yielding 92 papers. We supplemented this
pool with six arXiv preprints and four additional relevant papers
known to us, bringing our initial pool to 102.

We then applied the following inclusion criteria: (1) involves
multiple LLM agents; (2) described agent behaviours or interactions
(e.g., response form, voting, disagreement, summarisation, collab-
oration); and (3) reports or illustrates system-level or user-facing
design details (e.g., interface layout, process flows), and not just
back-end architectures or benchmarking results. This screening
reduced our set to 33 papers (including two surveys). We then per-
formed a full-text, open (bottom-up) coding of these 33 manuscripts,
tagging observed interface patterns such as the ensemble size, until
no new codes emerged. Through affinity mapping and team discus-
sions, we iteratively clustered our codes into mid-level categories
(e.g., reasoning visibility, aggregation), and then consolidated into
seven interface-level design dimensions (D1–D7). The complete
codebook and list of included papers are available in our supple-
mentary materials.

3.2 Core Design Dimensions of Multi-Agent
Interfaces

From analysing the 33 papers, we distilled seven interface-level
design dimensions that govern how multi-agent LLM systems are
structured, and how they surface their internal reasoning to end-
users:

Agent Composition: Howmany agents are involved, and what
roles do they play?
• D1 — Number of Agents: Ensemble size (typically 2–6).
• D2 — Role Specialisation: Whether the system involves
homogeneous agents with identical roles, or heterogeneous
ones with functionally distinct roles, such as critics who
challenge others’ responses or summarisers.

Reasoning Visibility: How much of each agent’s internal rea-
soning is revealed, and in what form?
• D3—Response Format: Output granularity, ranging from
opaque, aggregated final answers only to individual agent
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answers with or without explanations, or visible chain-of-
thought reasoning.

• D4 — Disagreement & Critique: Whether and how sys-
tems surface internal dissent, with some systems not re-
vealing disagreement at all, while others making it salient
implicitly via response diversity, or explicitly via peer cri-
tiques/debates or dedicated critic agents.

Interaction Topology: How do agents interact, and how is this
shown?
• D5 — Interaction Paradigm: How agents interact with
one another: parallel (independent) responses, sequential
responses, or multi-turn deliberations where agents build
upon one another’s responses.

• D6 — Information Flow Architecture: How information
flows between agents: flat configurations (all agents con-
tribute equally), pipeline flows (e.g., agent A proposes→ B
critiques → C revises), or hierarchical flows where a lead
agent (e.g., “judge”, “coordinator” ) synthesises inputs from
others.

Output Aggregation: How is the final system recommendation
derived?
• D7 — Aggregation Mechanism: How individual agent
outputs are consolidated into a final response. Some sys-
tems surface all agent responses, while others employ a
meta-agent to produce an aggregated output: via voting,
summarisation, or post-debate consensus.

3.3 Operationalising the Design Space as
Study Stimuli

The design space above illustrates the diverse ways in which multi-
agent systems can be instantiated — varying in the number of
agents, their roles, interaction patterns, reasoning visibility, how
disagreement is surfaced, and more. But how do end-users interpret
these epistemic signals and cues? What do they seek when assessing a
system’s transparency and trustworthiness? And how can multi-agent
interfaces be designed to align with these user needs?

To investigate these questions, we instantiated the design space
through a set of multi-agent interface variants, each constructed
using distinct combinations of the identified design dimensions (D1-
D7). Rather than exhaustively testing all possible design space con-
figurations, we curated a tractable set of interface variants grounded
in the surveyed multi-agent literature, designed to expose a range
of cognitive and epistemic strategies that participants may employ
when assessing trustworthiness in such contexts. We sought to
capture key patterns and salient configurations observed across
prior work (e.g., opaque responses, majority voting, agent-level
explanations, dedicated critics, peer debate), while ensuring each
variant differed meaningfully along the dimensions so participants
could compare them and articulate trade-offs.

These interfaces served as epistemic probes, evaluative design
artefacts embedded with some theoretical intent, designed to pro-
voke reflection, surface mental models, and elicit rich insight into
users’ beliefs and attitudes [28, 93]. Such probes are widely used in
design-led research to explore user perceptions of emerging tech-
nologies [59, 77]. We designed the following five representative
interface variants, V1-V5, each embodying a distinct approach to

multi-agent transparency and foregrounding particular epistemic
cues:

• V1 (Final Answer) represents a fully opaque baseline, pre-
senting only the final system output with no visible multi-
agent structure, individual agent responses, rationales, or
aggregation logic. It seeks to expose how users evaluate trust
in a multi-agent system in the absence of process visibility.

• V2 (Agents Answer) reveals each individual agent’s decision
(without explanations), with the final system output decided
through the majority outcome. This interface highlights epis-
temic cues such as response diversity and majority voting,
reflecting LLM architectures that employ such sampling and
voting strategies [96, 101].

• V3 (Agents Explain) extends V2 by including brief agent-
level explanations alongside decisions. This makes agents’
reasoning diversity and any (dis)agreement amongst them
visible, helping users contrast and compare divergent justifi-
cations, representing multi-agent systems where each agent
explains itself [17, 86, 100].

• V4 (Critique) presents individual responses and explana-
tions as V3, and adds a dedicated critic agent that evalu-
ates and critiques its peers’ responses. This variant makes
disagreement and dissent explicit, and reflects multi-agent
architectures that incorporate specialised critic or verifier
agents [6, 24, 94, 109].

• V5 (Debate) presents a multi-turn peer-to-peer debate in
which agents engage in dialogue and converge on a consen-
sus answer. This highlights deliberation, evolving reasoning,
and consensus formation, reflecting systems that employ
multi-agent debates and discussions [52, 54, 82, 108].

These design choices enabled us to examine how the distinct
epistemic cues embedded and surfaced in these interfaces shape
users’ mental models and their perceptions of transparency and
trust, across tasks. In particular, the five variants enabled us to
surface a wide range of user strategies: evaluating trust in opaque
system outputs (V1), making sense of response diversity and ma-
jority heuristics (V2), comparing multi(ple)-agent explanations and
their reasoning diversity (V3), evaluating critiques and disagree-
ment from a dedicated critic agent (V4), and interpreting an evolving
debate that reaches consensus (V5).

Table 1 summarises how the variants (V1-V5) map onto the seven
design dimensions (D1–D7). While we varied dimensions D2–D7
across interfaces, D1 (Number of Agents) was intentionally held
constant at four to support meaningful comparisons between inter-
faces. Ensemble size shapes nearly all other visible aspects of the
interface, such as the number of agent responses, explanations, or
critiques, so varying it alongside D2–D7 would have compromised
our ability to use each interface variant as a focused probe, and re-
quired an impractically large number of interface variants. Instead,
we explored D1 in a focused comparison task, where participants
viewed side-by-side mockups of otherwise identical interfaces with
four agents (as used throughout V1–V5) versus eight, chosen to
ensure sufficient contrast between the probes, and reflected on
how ensemble size shaped their perceptions of the system (see
subsection 4.3, Stage 4).
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We emphasise that our aim was not to identify a “best” inter-
face, but to use representative, theoretically grounded variants as
stimuli, probing how users interpret and evaluate transparency and
trustworthiness in multi-agent LLMs, and uncovering a range of
their sensemaking strategies in the process.

4 Method
To examine how users interpret, evaluate, and form preferences
around transparency in multi-agent LLMs, we conducted an in-
person, qualitative, design-led lab study. In this emerging and under-
theorised design space, where user needs and interpretive strategies
remain to be fully understood, such an exploratory qualitative ap-
proach was suitable for our aims. Our aim was to surface rich
accounts of users’ mental models of multi-agent LLMs (RQ-1), iden-
tify the affordances they treat as signals of transparency and trust-
worthiness (RQ-2a), elicit preferences for how those affordances
should be designed and presented (RQ-2b), and understand how
these needs vary by task (RQ-3). Participants interacted with five
multi-agent LLM interfaces (V1-V5), each instantiating a distinct
combination of the design dimensions identified in our literature
review (see Table 1).

We drew methodological inspiration from prior work in hu-
man–AI collaboration [75, 83, 98] and card-sorting methods in
design research [25], and followed the Comparative Structured Ob-
servation (CSO) approach proposed by Mackay and McGrenere
[60]. They define CSO as “an interventionist, qualitative method for
assessing and advancing a design concept where researchers observe
participants as they compare and reflect deeply upon their experi-
ences with selected design variants, exposure to which is structured
[...].” CSO is explicitly interpretivist and design-oriented: it treats
qualitative, comparative reflections as the primary data, and any
quantitative measures as secondary, with the goal of advancing a
design concept rather than testing formal hypotheses or estimating
effect sizes. CSO was thus well-suited to our goal of building theory
around how multi-agent reasoning should be surfaced and what
preferences, tensions, and trade-offs emerge, rather than hypothesis-
testing interfaces to find the “best” one. Further, CSO enabled us
to use interfaces that operationalised the design dimensions as
epistemic probes [59, 77, 93] to prompt participant discussion and
reflection, eliciting comparative judgements and trade-offs (e.g.,
why one variant appears more trustworthy than another).

4.1 Task Selection and Design
Building on prior HCI research that differentiates tasks by complex-
ity, ambiguity, and uncertainty [5, 16, 76, 92], we selected two con-
trasting question-answering tasks that reflect common real-world
use cases for LLMs: information-seeking and logical-reasoning.
Across both tasks, we sought questions that (1) did not require
specialised domain knowledge, allowing the general population to
reason about them, yet (2) were non-trivial and sufficiently challeng-
ing to warrant AI assistance. Information-seeking tasks were binary
(yes/no) general-knowledge questions with known answers (e.g.,
“Has Paris hosted the Summer Olympics more times than Tokyo?” ),
adapted from prior work on AI trust and uncertainty [42, 76]. Rea-
soning tasks, by contrast, involved more uncertainty and subjective

interpretation. For this, we used LSAT 1 logical reasoning questions
(multiple-choice questions with five options, A–E), which assess
general aptitude and deductive reasoning rather than legal knowl-
edge. These questions have been widely used in prior AI-assisted
decision-making research [5, 8], and we selected questions marked
‘difficult’ in LSAT preparation materials [1, 2].

Together, these two tasks enhance the ecological validity of
our study by reflecting common real-world contexts where people
query LLMs for both knowledge lookup and reasoning, and let us
examine how users’ mental models and transparency preferences
shift with (the cognitive and informational demands of) the different
tasks.

4.2 Interface Design
To instantiate the design space defined in §3.2, we developed five
interactive mock interface variants (V1-V5), implemented using
HTML/JavaScript and designed to resemble a contemporary chat-
based LLM platform. For visual consistency, we standardised ty-
pography, layout, and structural elements across all variants, and
for added realism, included animations commonly observed in real
LLM systems, such as staggered “typing” reveals.

All interfaces presented pre-generated outputs held constant
across participants. V1 (Final Answer) and V2 (Agents Answer) did
not present agent rationales, while V3 (Agents Explain), V4 (Cri-
tique), and V5 (Debate) required text generation: agent explanations
in V3, explanations plus critique in V4, and a multi-turn convergent
debate in V5. For information-seeking tasks, we manually crafted
agent outputs for both correct and incorrect responses. For rea-
soning tasks, we sourced correct answers and explanations from
official LSAT preparation materials [2], which were then provided
to OpenAI’s GPT-4o 2 to condense into concise rationales. We fur-
ther prompted GPT-4o to generate stylistically similar but plausible
rationales for agents selecting incorrect task responses, as well as
critiques for all rationales.

To support accurate stimuli generation, we iteratively refined
our prompt to specify the desired structure, tone, length, and log-
ical characteristics of each rationale and critique, and included
additional contextual details about the experiment. The full final
prompt is presented in Appendix A. All generated outputs were
then manually reviewed and refined by three authors in a two-step
process. In the first pass, we checked for plausibility and intended
(mis)alignment, ensuring that correct rationales were faithful to the
task while incorrect rationales were believable yet misaligned with
the task logic (V3), including critiques that surfaced plausible limita-
tions of each agent’s reasoning (V4). In the second pass, we ensured
stylistic consistency across responses and tasks (e.g., length, tone).
Lastly, the V5 debate sequences were manually authored by the
research team using the vetted V3/V4 rationales as inputs, ensuring
a coherent multi-turn dialogue without introducing new facts. Final
stimuli are available in our supplementary materials.

1The Law School Admission Test (LSAT) is a standardised test administered by the
Law School Admission Council (LSAC).
2https://openai.com/index/hello-gpt-4o/
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Variant
What the Multi-Agent

System displays
D1 D2 D3 D4 D5 D6 D7

Number
of Agents

Role
Spec.

Response
Format

Disagreement
& Critique

Interaction
Paradigm

Information
Flow

Aggregation
Mechanism

V1 Only the aggregated
response

4 No Answer only None Hidden Hidden Hidden

V2 Individual agent
response overview +
aggregated response

4 No Answer + vote count Through response diversity
(summary only)

Parallel Flat Majority vote

V3 All agent responses +
explanations +
aggregated response

4 No Individual agent responses
+ explanation

Through response diversity
(visible)

Parallel Flat Majority vote

V4 All agent responses
+ critique
+ aggregated response

4 + Critic Yes Individual agent responses
+ explanation + critique

Through a dedicated critic
agent

Sequential Hierarchical Summarisation

V5 Individual agent
responses + explanations
+ inter-agent debate +
summarised consensus

4 No Individual agent responses
+ explanation + reasoning
evolution

Through peer debate &
convergence

Multi-turn Hierarchical Consensus

Table 1: Interface variants (V1—V5) and their operationalisation using the seven identified design dimensions (D1—D7). Short-
hand legend: V1 = Final Answer; V2 = Agents Answer; V3 = Agents Explain; V4 = Critique; V5 = Debate.

Not
enough

information

About
right

More
information
than I need

or want

Not
enough

information

About
right

More
information
than I need

or want

Final
answer

Agents
explain

Agents
answer

Agents
debate

Critique

Final
answer

Interface CardsPROMPT: How much insight did this system give you into how the 
answer was generated?

Participant

Participants drag interface cards 
onto the spectrum

Spectrum for information sufficiency

PROMPT: How much insight did this system give you into how the 
answer was generated?

(A) (B)

Agents
answer

Agents
debateAgents

explain

Critique

Interface Cards

Movable cards representing the 5 
interface variants [V1 — V5] 

Figure 2: A before (A) and after (B) snapshot of the digital card-sorting activity participants completed for the Transparency
scale, informed by Comparative Structured Observation [60] and inspired by card-sorting design-led research [25]. Participants
arranged cards representing the five interface variants (V1–V5) along a spectrum of perceived transparency (“How much insight
did this system give you into how the answer was generated?” ), anchored from “not enough information” to “more than I need or
want.” This activity formed the basis of our implementation of the Comparative Structured Observation method, with the
interface cards serving as elicitation probes, giving participants a concrete way to externalise judgements, compare variants
(and their design dimensions) side by side, and articulate trade-offs. The same activity was repeated for two additional scales
capturing perceived helpfulness and perceived reliability.

4.3 Study Procedure
We ran face-to-face study sessions in a quiet lab setting using a
laptop. Participants interacted with the interfaces and engaged in
comparative and reflective activities, outlined below. Each session
was recorded with permission. The study unfolded as follows:

Stage 1. Participants were introduced to the study context and
provided a short pre-task questionnaire, capturing demographic

data (age, gender), AI usage frequency, propensity to trust automa-
tion (TiA-PtT), and AI literacy (see Appendix B for scales and mea-
sures). As a warm up for the think-aloud, participants interacted
with ChatGPT by asking it a light question (e.g., a historical fact) and
then describing what they believed happened “behind the scenes.”

Stage 2. Next, participants engaged with the tasks and the five
interface variants. The task type was a within-subjects factor: each
participant completed both tasks (information-seeking and logical
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reasoning), presented in a counterbalanced order. When introduc-
ing each task, we asked the participant to imagine a usage context
tailored to the task type (e.g., ‘looking up a fact to settle a debate
during dinner with friends’ for the information-seeking task, and
‘coming across a tricky question when preparing for a standardised
exam’ for the logical reasoning task). Each task began with partici-
pants answering the question independently and recording their
confidence (0–100). They were then shown all five interface vari-
ants, one by one, in randomised order. While interacting with each
variant, participants were prompted to think aloud, followed by a
brief semi-structured interview probing their impressions, what
elements stood out, how they believed the system produced its
answer, whether they would follow its advice, and what they would
change about the interface. This stage helped us surface mental
models and interpretations of the design dimensions at play.

Stage 3. After engaging with all five variants for a task, par-
ticipants completed three comparative card-sorting activities on a
digital canvas in Miro 3. See Figure 2 for an illustration of one such
activity. The canvas contained movable cards representing each
interface variant (V1-V5), consisting of a screenshot of the interface
and a brief title to anchor participants’ memory and assist with
recall. Following design-led approaches based on card sorts [25], for
each sort, participants arranged cards along spectrums capturing
perceived transparency (“how much insight did this system give you
into how the answer was generated?”, anchored from “not enough
information” to “more information than I need or want” ), perceived
interface helpfulness in the task’s stated context (“how helpful would
this design be if you were using it in a real-world context – [preparing
for a standardised exam (logical reasoning task)] or [looking up a fact
during dinner with friends (info seeking task)?]” ), anchored from
“least helpful” to “most helpful”, and perceived interface reliability
in the task’s stated context, anchored from “least reliable – I would
not follow its answer” to “most reliable – I would follow its answer”.
Following the Comparative Structured Observation method, we
utilised each sort order as a structured prompt to probe participants
and elicit comparative reasoning, both within each sort (e.g., “What
makes [V3] more helpful in this scenario than [V2]?” ) and across
sorts, for example, when an interface ranked high on transparency
but low on helpfulness, we probed this tension further by invit-
ing participants to articulate why (e.g., “What makes [V2] more
informative yet less helpful in this scenario?” ).

The card-sorting stage served as the anchor for Comparative
Structured Observation in this study. By asking participants to
arrange and then explain the relative placement of designs, we
were able to elicit fine-grained insights in how they interpreted
transparency, usefulness, and reliability, and why and how they dis-
tinguished between the interfaces on the basis of these constructs.
The structured comparisons gave our participants a concrete basis
for reflection, while the facilitator’s follow-up questions within
and across sorts encouraged them to articulate the reasoning be-
hind their choices, surface tensions between dimensions, and make
explicit the trade-offs that might otherwise remain implicit. We
repeated the same protocol sequence for the second task.

Stage 4. After the second task, participants completed a brief
exploratory comparison of ensemble size (Design Dimension D1

3https://miro.com/index/

- Number of Agents). We presented side-by-side mockups of oth-
erwise identical interfaces with four agents (as used throughout)
versus eight agents, and probed how the additional agents shaped
participants’ impressions of the system and perceived complexity.
Since D1 was held constant across design variants V1-V5, this clos-
ing activity isolated how ensemble size can influence perceptions of
multi-agent systems, helping us surface thresholds for ‘how many
is too many’ and whether preferences vary by task type.

The session concluded with a short, semi-structured wrap-up
interview inviting participants to reflect on their experiences and
preferences across tasks, giving us more contextualised insights
into the tensions we were interested in and better understand how
participants’ information expectations shifted between reasoning
and information-seeking tasks.

4.4 Participants and Recruitment
We recruited 12 participants (6 men and 6 women) through our
university’s notice board and snowball sampling, ensuring diver-
sity in educational backgrounds and levels of AI familiarity. Our
sample size aligns with typical sizes reported in similar within-
subject Comparative Structured Observation (CSO) studies in HCI
(e.g., [21, 88]), and follows established guidance in qualitative re-
search to achieve thematic saturation [11, 27]. Eligibility criteria
required participants to be fluent in English and to have at least
some prior experience with Large Language Model (LLM) chatbots
(e.g., ChatGPT, Gemini, etc). All participants provided informed
consent before taking part and were compensated approximately
US$16 for their time. The study received approval from our univer-
sity’s Human Ethics Committee, and sessions lasted approximately
65 minutes each.

4.5 Data Analysis
We adopted a qualitative-first approach, consistent with [60]’s Com-
parative Structured Observation (CSO). For qualitative analysis of
our think-aloud and interview data, we followed Braun and Clarke’s
six-phase Reflexive Thematic Analysis [10, 12]. Our approach was
both deductive and inductive: we began with a structured coding
framework grounded in our research questions, study objectives,
and identified design dimensions/affordances, while also remain-
ing open to unanticipated patterns, tensions, and interpretations
that emerged from the data itself. All interview recordings were
transcribed using a research tool called Dovetail 4 and manually
corrected for transcription errors. We used participants’ screen
recordings to clarify deictic references in audio recordings (e.g.,
“this interface is helpful”) and ensure accurate tagging. The first au-
thor familiarised themselves with the full set of transcripts through
multiple close readings, and iteratively tagged utterances using
a dynamic codebook. The author team collaboratively reviewed,
refined, and merged overlapping low-level codes, resolving ambi-
guities through discussion, before forming high-level themes. The
resulting set of themes forms the basis of our findings, presented
in the following section.

4https://dovetail.com/
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5 Findings
Our analysis focuses on how participants interpreted and eval-
uated the design dimensions operationalised by the multi-agent
interfaces, and how these interpretations shaped their perceptions
of transparency and trustworthiness in multi-agent systems. We
first provide an overview of our participants and then present our
findings.

5.1 Participant Overview
Table C.1 (Appendix C) summarises our participants’ demographics
and dispositional characteristics. Our 12 participants represented a
mix of backgrounds and levels of AI familiarity. Most participants
described themselves as frequent users of LLMs, often interacting
with systems like ChatGPT multiple times a day, while a smaller
group reported occasional use (a few times per week or month).
Participants also varied in both their propensity to trust automation,
and in their self-reported AI literacy. Together, these observations
suggest that our sample included participants spanning the spec-
trum of AI familiarity and dispositional trust tendencies.

Before interacting with the AI interfaces, participants answered
the information-seeking and logical reasoning tasks independently
and rated their confidence (0–100). We find that their confidence
was low in both domains:M = 40.8 (SD = 22.3) for the reasoning task
and M = 40.3 (SD = 17.1) for the information-seeking task. These
scores indicate that participants had limited prior knowledge in
both domains, supporting the suitability of our tasks for studying
AI-assisted decision-making.

5.2 RQ1: Mental Models of Multi-Agent Systems
To understand how participants conceptualised a multi-agent LLM
and how this shaped their interpretations, we examined their spon-
taneous explanations and metaphorical framings.

5.2.1 System metaphors. Participants frequently drew on fa-
miliar metaphors (e.g., teams, panels) to describe the multi-agent
system, and attributed varying levels of autonomy, coordination,
and capability to the agents. Several imagined the system as a “panel”
of agents, each independently generating and voting on answers
(P3, P4, P7 ), while others saw it as a team with roles: “an agent
who reads the query [. . . ] another who does the search [. . . ] another
presents the final answer” (P7 ). For V4 (Critique), some described
the system as composed of “multiple teams trying to arrive at the
same answer, taking different routes,” with an additional “team that
goes into each of those and tries to break down that argument” (P1).

Even when uncertain, participants actively constructed mental
models of how the system arrived at a final answer. For example, P8
hypothesised “some kind of numerical score” or probability-based
aggregation mechanism, while P4 inferred a majority vote logic:
“Each individual agent tells the system what their answer is, and then
the system will go with the most picked answer.”

5.2.2 Anthropomorphised framings of the multi-agent sys-
tem. Several participants anthropomorphised the agent ensembles,
attributing to them human-like reasoning or motives: “I guess the
system has these little people, or I mean, agents, who go through all the
computation [...]” (P2). More specifically, V5 (Debate) was described
to be similar to “listening to a conversation with other humans” (P7 ),

while V4 (Critique) was seen “like a human judge analysing a group
of people” (P12).

Interestingly, one participant also imagined a mixture of expert
systems at play: “There’s multiple AI agents working in the back-
ground to give me an answer. If you treat them as people, then one
of them could be good at biology, one at logic, one at comprehension.
The system received my question, passed it on to the AI who is the
most knowledgable [...], and then that AI has generated the answer
for me” (P9). Even participants who did not explicitly equate the
agents to human-like entities still verbalised their mental models
in anthropomorphised terms: “peers who can think together” (P7 ).

5.2.3 Agents’ model/vendor identity served as a heuristic
for reliability. Four participants expressed a desire to know more
about the individual agents’ underlyingmodel or vendor, as a means
of evaluating trustworthiness: “I would want information about each
model and vendor to decide if it is believable” (P6). These participants
expressed that newer or more capable models reduced their need
for transparency: “If the agents in [V2 (Agents Answer)] were all
GPT-5 level, I would find it very reliable, I would not even need an
explanation with such newer models. But if the agents were [from
the] beginning of ChatGPT, then I would not be so sure and need more
explanation” (P10).

5.3 RQ2a: Affordances as Signals, and
RQ2b: Operationalisation Preferences

5.3.1 D1: Number of Agents.
Participants saw the number of agents in the multi-
agent system (ensemble size) as a signal of system ca-
pability and reliability, with their preferences revealing
trade-offs between reliability and mental workload.

Larger ensembles were seen as more reliable, but also intro-
ducedmental workload. A vast majority of participants perceived
larger ensembles as more capable or credible because they entailed
“lots of little people working towards one goal, so it seems more power-
ful and credible” (P8). Similarly, participants also believed systems
with more agents would make more reliable decisions: “With more
agents involved, it just gives me more certainty that the answer doesn’t
come from some random guess, so I trust it more” (P11). However,
this was not universally true. A few participants viewed higher
agent counts as introducing ambiguity or mental workload: “I’m
not that trusting of AI, I feel the need to go over all of them, so more
agents would create more work” (P12).

While participants typically saw agent diversity as valuable to
the system’s internal reasoning, they wanted to manage how it was
surfaced. They wanted to know that multiple agents were involved,
but did not necessarily want to see all their outputs: “More agents
would make the system seem more reliable, if all [the individual
responses] are hidden behind the scenes” (P5); “Use as many [agents]
as needed for developers to be confident, but for presentation to me, 4
is OK” (P4).

Ideal ensemble size was seen as task-dependent. Our partici-
pants wanted the system to adapt its ensemble size to the complexity
of the task: “For the [info-seeking task], I only need 2 or 3 agents to
trust it, but for the [reasoning task], I would need 5 to feel confident
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in the system” (P3). One participant pointed out that design choices
like odd-numbered ensembles could be useful to avoid ‘ties’: “I
would never want an even number” (P12).

5.3.2 D3: Response Format.
Participants generally foundV1 (Final Answer), which
only presented a final answer without any agent re-
sponses / rationales, too opaque to be trustworthy or
helpful. The lack of visible process detail made it hard
to evaluate the system’s reasoning or build trust in its
output.

Aggregated answers without explanation obscured the sys-
tem’s reasoning, reducing trustworthiness. Many participants
expressed distrust toward the multi-agent system presented in V1
due to its lack of visible process transparency: “It just says this is
the answer, it doesn’t give me any explanation. It’s too little, I don’t
trust it” (P11). Participants desired more insight into the underlying
process: “I would need at least a summary of what different agents
said, and how they agreed” (P3). This lack of visible reasoning also
made the system not very helpful for sensemaking: “[V1] just pops
one answer in my head and doesn’t help me think through it, I have
to work out on my own why it might be right” (P12).

A minority valued the speed and decisiveness of an aggre-
gated answer with minimal transparency. Two participants
preferred V1 for its clarity and lack of ambiguity, particularly in the
simpler info-seeking task: “[V1] is the perfect amount of information
I need for this type of question, is gives me a straightforward answer
without hesitating” (P8). Paradoxically, P4 described feeling more
confident because they were not exposed to the inner workings of
the system: “For a simple problem like this, where I trust AI enough
in general, [V1] is good enough. [I am] actually more confident with
this because I can’t see its imperfections” (P4).

V2 (Agents Answer) displayed individual agent re-
sponses before presenting the final aggregated answer,
but omitted any agent-level rationales. Overall, partic-
ipants regarded individual agent responses [V2] as a
minor improvement over an aggregated system-level
answer [V1], but still inappropriate for trust and sense-
making without some explanation or evidence.

Surfacing individual agent answers offered users some
transparency, but insufficient for trust and sensemaking. Par-
ticipants perceived the multi-agent system in V2 to be less opaque
than V1, and a few appreciated the glimpse into agent-level output:
“It gives me a bit more like, hey, us agents have different ideas and then
this is the majority” (P2). Still, this increase in surface transparency
was widely considered insufficient: “[...] a sliver more of information,
but I still don’t know how each individually reached the conclusion”
(P5). Without explanations, participants questioned the system’s
trustworthiness: “Sometimes ChatGPT will just make up answers. So
[V2] is helpful but more evidence is needed for me to trust it” (P3).
Several participants also expressed that V2 did little to support their
reasoning and sensemaking: “It doesn’t really help me reason [...], not
much more helpful or reliable than [V1]” (P4). Not seeing agent-level
rationales was even more undesirable in the reasoning tasks: “For a

task like this, I think the reasoning matters a lot. I don’t like to rote
learn. I like to actually understand why things happen” (P11).

We report participants’ interpretations of the (implicit) disagree-
ment signal (D4) and the majority-vote cue (D7) present in the V2
interface in §5.3.3 and §5.3.5.

V3 (Agents Explain) displayed each agent’s individ-
ual response alongside a brief rationale, followed by
an aggregated final response. Participants widely de-
scribed this design as having affordances that strike the
ideal balance between process transparency and mental
workload.

Brief individual agent rationales hit the sweet spot of pro-
cess transparency and supported users’ sensemaking. A major-
ity of participants described this format as offering the right amount
of process visibility without overwhelming them, which made the
multi-agent system appear more helpful and reliable: “[V3] is just
enough information to make a quick decision in real life and be a
little bit more sure, I found it reliable” (P1).

Viewing diverse agent rationales gave users decision con-
trol, fostering trust. Several participants appreciated that V3’s
response format surfaced multiple agent rationales that let them
weigh the evidence themselves: “It’s not telling me, oh, here’s the
right answer, I can pick for myself which I want to follow” (P1). Oth-
ers described using the agent explanations as scaffolding to build
their own reasoning, rather than relying blindly on an AI recom-
mendation: “Reading each explanation is useful [...] to build my own
reasoning” (P10). This retained participants’ agency as the final
decision-maker: “Although I’m asking the chatbot my question, I’m
not handing [it] the agency and autonomy 100%” (P3).

We report how agent disagreement (D4) within V3 shaped user
perceptions in §5.3.3, and while V3 was widely seen as striking
the right balance, preferences varied by task context, a finding we
present later when discussing task-related perceptions in §5.4.

5.3.3 D4 (& D2): Agreement, Disagreement, and Critique.
Participants interpreted agent-level (dis)agreement and critique as
key system credibility signals, sometimes in unexpected ways. In
our stimuli, role specialisation (D2) was made salient only via a
dedicated critic agent in interface V4, so we also discuss findings
related to design dimension D2 in this subsection. We organise
this subsection into three parts, presenting user perceptions of: (i)
implicit disagreement (V2 and V3), (ii) explicit disagreement (via the
critic in V4), and (iii) agent agreement observed across interfaces.

Implicit agent disagreement reduced system reliability, espe-
cially when no rationale was provided. In V2 (Agents Answer),
a majority of participants expressed diminished trust when one of
the four agents visibly disagreed but offered no explanation. The
mere presence of a dissenting agent without rationale introduced
uncertainty and eroded the system’s reliability: “Looking at dis-
agreement in [V2] makes me uncertain, it makes me feel like I need
even more information to trust the system” (P5). A few participants
expressed that they would prefer not to see such disagreements at
all: “I don’t want to see that [dissenting agent], I understand that AI
is not always right but it’s just giving me so much doubt” (P2).
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In contrast, in V3 (Agents Explain), agent disagreement was
perceived as less damaging to trust because each agent provided a
rationale. This allowed users to interrogate the disagreement and
determine its relevance: “It now lets me see the reasoning of the agent
that gives the different answer. And [...] lets me judge which one is
believable” (P4).

An explicit critic agent boosted perceived trustworthiness by
showing that the system is checking itself; critiques also pro-
vided scaffolding for participants’ own reasoning and sense-
making. Participants widely appreciated the critic agent in V4
(Critique) because it made the system appear more credible. The
presence of an explicit check gave users confidence that the system
was not blindly generating answers: “They are analysing each other
which makes it very trustworthy” (P6); “The Critic Agent improves
my trust [...] this system is not deceptive” (P7 ). Participants also de-
scribed the critic agent as helping them trust the AI more because
it acknowledged AI fallibility: “It makes me less doubtful [...] because
it’s kind of like self-aware about AI limitations” (P2).

The critic agent also surfaced “raw materials” for participants’
own deliberation (P11), assisting sensemaking: “I saw some argu-
ments and different perspectives which makes me understand better”
(P8). Further, the critic supported users’ agency by highlighting
weaknesses of each reasoning path: “I feel like I have control of the
decision here, which I find very helpful” (P6).

Highlighting system limitations through an explicit cri-
tique backfired in some cases. While many found the critic help-
ful, some also saw it as cognitively burdensome: “Lot of information
to digest. More burden for me to analyse both the agent responses and
the critique” (P10). For one participant, the critic exposing system
limitations backfired and depleted trust: “Looking at the critic agent
makes me less confident in the system’s capacity to answer my ques-
tion” (P3). A few participants suggested the critic agent should be
employed behind the scenes: “This would be more trustworthy if it
happened in the background [...] showing it to me makes too much
cognitive noise” (P5).

When agents agreed and offered consistent reasoning, par-
ticipants perceived the system as more reliable. Across condi-
tions that displayed individual agent rationales (e.g., V3 and V4),
participants not only looked at whether agents agreed, but also
evaluated the consistency of their reasoning. When agreeing agents
explained their reasoning in similar ways, this boosted perceived
system reliability: “The majority of agents are giving the same answer
in [V3] and they explain themselves in similar ways, so I trust this
answer even more” (P8).

5.3.4 D5 & D6: Interaction Paradigm and Information Flow.
Although interaction paradigm (D5) and information-flow architec-
ture (D6) are core design dimensions of multi-agent systems, they
did not emerge as salient cues shaping participants’ transparency
or trust judgements. Only one participant expressed wanting to
know more about the information flow, prompted by something
visible (e.g., disagreement) rather than by the structures themselves:
“I don’t know howmuch weight each agent carries [...] do they have the
same weight and influence, is there a leader? [...] It’s still very blurry
for me how they collaborate with each other” (P5). Overall, partici-
pants’ assessments were driven by visible cues (e.g., the presence

of rationales, whether agents agreed, whether a critic was present),
while interaction topology and information flow remained per-
ceptually latent. Thus, in our study, D5/D6 did not function as
user-facing trustworthiness signals.

5.3.5 D7: Aggregation Mechanism: Majority Vote and Con-
sensus. Participants’ perceptions of the multi-agent system were
shaped not just by the individual agent outputs, but also by how
those outputs were consolidated, whether through a majority vote
/ agreement, or by the agents reaching consensus.

Visible majority agreement among agents enhanced per-
ceived system reliability, even without rationales. Across de-
sign variants that surfaced multiple agents’ responses (e.g., V2,
V3, V4), participants frequently interpreted majority agreement
as a signal of trustworthiness and correctness: “If the majority of
agents agrees on something, I trust it” (P10). This perception was
so strong that some participants frequently disregarded the mi-
nority/dissenting agent altogether: “I think the [dissenting agent]
could also be right, but it doesn’t have enough friends. So I don’t think
it’s trustworthy” Some even reflected critically on this tendency,
acknowledging that majority agreement could be misleading: “Wow,
the more I think about this, the majority could kind of fool me or
convince me [...]” (P2).

Seeing agents reach consensus through debate boosted trust,
and delivered rationales in a naturalistic, conversational for-
mat. The multi-turn debate ending in consensus (V5) was seen
by many as a valuable system process that mirrored human-like
deliberation and enhanced the system’s reliability: “I think it’s re-
ally important to see that the agents actually converge at some point,
because if [not], then I’d be skeptical about the answer” (P10), and
helpfulness: “I am able to read through and understand where I was
wrong, because I had a similar view as Agent B but it got proven
wrong. Seeing that made me adjust my own thoughts” (P12). The con-
versational structure also made the reasoning feel more digestible:
“This conversation feels natural [...] as if people are talking about this”
(P10).

Despite its transparency, the debate mechanism was some-
times perceived to contain “too much” information. While V5’s
debate process was seen as trustworthy and thorough, some partic-
ipants felt it introduced unnecessary complexity which was “not
worth the cost,” especially for simpler tasks: “I find it very reliable,
but I think that’s a lot [...] to read” (P1).

5.4 RQ3: Transparency Needs by Task Demands
5.4.1 Participants evaluated the costs and benefits of process
transparency based on task complexity and fit. Participants
calibrated their transparency preferences to the complexity and
perceived cognitive demands of the task. For the simpler, factual
info-seeking task, concise outputs with minimal process visibility
(e.g., V1 or V2) were often preferred: “I consider [V1 (Final Answer)]
the most helpful in this context, that is sufficient for me to trust this AI”
(P4). In these cases, more elaborate forms of process visibility (e.g.,
V5) was seen as unnecessary: “Now I feel like [the debate] is just too
much because it feels like a fairly simple question” (P1). Conversely,
for more complex reasoning tasks, participants perceived process
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visibility as valuable and worthwhile: “[V5 (Agents Debate)] is nec-
essary, simply because the LSAT task requires more mental demand.
Having the longer explanations and a discussion actually helps with
my overall understanding” (P10). In these settings, interfaces like
V4 and V5 were seen as helpful rather than burdensome. We also
observed that when the system surfaced more reasoning than
users felt the task warranted, it sometimes backfired and un-
dermined their trust. For example, in simple info-seeking tasks,
overly elaborate outputs reduced perceievd system credibility: “[V5]
is trying too hard to convince me of the answer, it’s throwing a lot at
me so I don’t find it reliable at all” (P1).

In addition to task complexity, participants’ transparency prefer-
ences were also shaped by the perceived stakes or consequences
of the task. In some cases, stakes overrode complexity: “If I was
answering this [info-seeking task] on Who Wants to Be a Millionaire,
I would very much take on the extra costs [of engaging with more
elaborate forms of process visibility]. I’ll need more insight into how
the agents made this decision” (P4).

5.4.2 Participants’ task expertise and disposition to trust
automation influenced how much process visibility is desir-
able. Participants’ own task domain expertise shaped how much
and which form of process insight they sought. When confident,
they typically wanted minimal transparency: “If I’m querying the
AI for something that I have expertise in, then I would like only a brief
output” (P9). Conversely, low task confidence increased their need
for transparency: “When I’m not confident at all, even looking at all
four [agent’s reasoning paths] may not be enough to trust it” (P4).

Furthermore, participants’ dispositional trust and past AI expe-
rience also shaped preferences. One participant described always
wanting more process insight due to low dispositional trust: “I
haven’t fully trusted AI 100% yet, so I would want as much infor-
mation as I can get every time, to understand why the AI made that
decision” (P4). Two others expressed that they would calibrate their
information sufficiency needs from a multi-agent system over time:
“If the AI is reliable enough for a while, then [...] I may not need as
much [transparency]” (P7 ).

5.4.3 Participants desired interfaces that let them flexibly
adjust ‘how much transparency’ based on the task. Eight
participants expressed a desire for collapsible or toggleable trans-
parency interface elements that would allow them to access agent
rationales only when needed — such as when verifying or better
understanding the system’s reasoning: “Have the consensus answer
up at the top [...] and if I have doubts or want to check the conversation,
I can expand it if needed” (P5). This was observed especially for the
simpler info-seeking task: “Whenever I use thinking [AI] models, I
always like to have the thinking collapsed. [That] would be useful
here as well, especially for the [info-seeking] task, if details could be
collapsed but still available if I want to see what each agent came up
with and why” (P10).

6 Discussion
In this study, we took a discovery-oriented, design-led approach
to understanding how users interpret transparency and trustwor-
thiness in multi-agent systems. This discussion synthesises our

findings to offer conceptual insights and implications for designing
trustworthy, context-sensitive multi-agent AI systems.

6.1 Reconceptualising Transparency: A
Sufficiency Judgement, Not a Volume Dial

Our results join a growing body of work [35, 43, 45, 56, 57] that chal-
lenges the assumption thatmore transparency or insight into system
reasoning is necessarily better. Across tasks and interfaces, our par-
ticipants did not seek complete visibility into multi-agent processes,
nor did they treat transparency as a “more-is-better” dial. Instead,
they evaluated it through a lens of contextual sufficiency — whether
the system offered enough insight to support their decision-making
in that moment. Participants gravitated towards what we term
a “Goldilocks’ ’ zone of transparency, a level of process vis-
ibility that aptly balanced the mental workload the multi-
agent interface exerted against the informational value it
offered. Importantly, this “just right” threshold was dynamic and
context-sensitive, influenced by task, AI, and participants’ dispo-
sitional characteristics, with the perceived trustworthiness of the
multi-agent system dropping sharply on either end of this thresh-
old. Notably, these judgements were not just about quantity, but fit.
Users sought enough process visibility to enable trust, sensemaking,
and independent judgement, but no more than that.

Task type was a strong determinant of the “just right”
transparency threshold. Participants doing the more ambigu-
ous reasoning task preferred interfaces such as V4 (Agent Critique)
and V5 (Debate), which supported their ability to evaluate diverse
reasoning paths. This form of transparency provided users with
“raw material” for their own sensemaking, which boosted their
trust. In such tasks, receiving a final answer without any expla-
nation, such as V1 (Final Answer) and V2 (Agents Answer), was
seen as insufficient and unhelpful for sensemaking. At the same
time, however, these interfaces became satisfactory and trustwor-
thy in simpler tasks, where more process insight or visibility was
instead seen as unnecessary, backfiring and eroding users’ trust.
This contrast is especially striking given that all five of our inter-
faces presented the same final (correct) answer, suggesting how the
amount and type of process transparency (and not accuracy alone)
influenced perceived trustworthiness. We posit that transparency in
multi-agent systems should not be seen as a binary (transparent vs.
opaque) construct, but rather as a spectrum where both extremes
can undermine trust.

Individual and dispositional factors also shaped where the
“just right” threshold for transparency lay. Participants with
higher task domain expertise or confidence typically preferred mini-
mal transparency, viewing additional system insight as unnecessary,
while those with lower confidence expressed a need for more visible
reasoning to assess trustworthiness. We also found dispositional
trust impacting these preferences: participants who expressed a
lower baseline trust in AI sought more detailed transparency to be
able verify system outputs and trust them.

6.1.1 Progressive, On-Demand Transparency Balances Pro-
cess Visibility and Cost. Eight of our twelve participants ex-
pressed a clear preference for flexible, progressive transparency,
where more detail could be revealed on demand. Participants wel-
comed the reliability benefits of multi-agent systems, without the
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cognitive cost of reading every agent’s reasoning by default. Instead,
they preferred a simplified starting point, such as the consensus
answer, with the ability to expand individual rationales, critiques, or
debates as needed. This design preference echoes longstanding UI
principles of progressive disclosure [14, 62], which is being increas-
ingly advocated for transparency in intelligent systems [43, 85].
Progressive disclosure is also supported by social science views of
explanation as an occasioned activity, provided only whenwarranted
by the context [34]. Our findings extend this to human-AI interac-
tion, and we posit that ‘optimal’ transparency utility may be better
achieved through more contextually-aware, layered disclosures
rather than static, exhaustive explanation/information dumps.

Our findings advocate for a new framing: multi-agent trans-
parency as contextual sufficiency, negotiated between the system
and the user. Rather than aiming for maximal exposure of agent
reasoning, designers should prioritise delivering just enough trans-
parency that best suits the task, dispositional, and contextual needs,
to support trust, sensemaking, and decision ownership without
overwhelming users. This re-framing also resonates with debates
around intelligibility versus fidelity in AI explainability research
[47, 99]: users often prefer explanations that are simplified and
cognitively manageable (intelligibility), even if they abstract away
from the system’s full internal logic (fidelity). In our study, partic-
ipants did not seek complete traceability of how agent reasoning
was generated, but valued enough insight for the task at hand.

6.1.2 Implications for Trust Calibration and Future Work.
These findings also offer a novel lens for theorising trust calibration
in multi-agent LLM systems.While much prior work conceptualises
trust calibration as stemming from a match between perceived and
actual AI performance [5, 49], our participants’ trust often hinged
on the perceived fit between the system’s transparency and their
current informational needs.

This raises concerns: transparency that feels “just right” may
increase users’ subjective trust, but not necessarily warranted trust.
That is, sufficiency-based transparency may boost users’ trust in
the system because it feels aligned, regardless of the AI’s actual
reliability. This is especially critical in scenarios where users have
low domain expertise: ideal transparency may lend the system an
illusion of legitimacy, as is commonly observed with explanations
in XAI systems [23, 67].

Our study provides theoretical grounding for several design
“levers” that may modulate trust, including process visibility, per-
ceived sufficiency, and flexible transparency structures. Future work
should empirically test how these levers interact with AI accuracy,
user expertise, and task complexity to influence trust calibration.Do
users better detect AI errors when given more process transparency?
Does progressive disclosure support critical assessment of AI output
or foster indiscriminate trust? Does combing through more process
transparency serve as a cognitive forcing function [13] which reduces
overreliance, or do users learn to ignore the bulk of process insight and
fall back on heuristic trust? These are some key questions for ad-
vancing human-centred design of multi-agent LLM systems, which
our work raises.

6.2 Interpreting Multi-Agent Transparency:
Cues, Heuristics, and How To De-Risk Them

Multi-agent reasoning is typically introduced as a back-end mech-
anism intended to improve raw AI performance, through mecha-
nisms such as self-consistency (sampling multiple reasoning paths
from a single model), voting (aggregating responses from multiple
independent agents), or debate (inter-agent deliberations to arrive
at a consensus answer) [53, 58, 95]. While these techniques can
boost AI accuracy, our findings suggest they also produce epistemic
signals, such as disagreement, critique, and consensus, that end-
users actively interpret as cues for when and how much to trust
the multi-agent system.

A key goal of our study was to build theoretical insight into
the cues users attend to and how these shape their perceptions of
transparency and trustworthiness. Across tasks, we found that
visible surface-level interface affordances, such as the number
of agents, presence of rationales, disagreement, and consensus,
strongly shaped user judgements. In contrast, more hidden multi-
agent architecture elements, such as interaction paradigm (whether
agents reasoned sequentially or in parallel, design dimension D5)
and information flow (whether information flowed between agents
in a pipeline or hierarchical form, design dimension D6), remained
perceptually latent and did not impact participants’ trustworthiness
judgements. In this section, we unpack the key epistemic cues users
relied on, highlight the design tensions and trade-offs that emerged,
and present implications for design.

6.2.1 Ensemble Size Serves as a Reliability Signal, But
Presents Trade-Offs Between Cognitive Cost and Visibility.
Our participants frequently interpreted the number of agents (en-
semble size) as a heuristic for system capability, perceiving larger
ensembles as having “more people working towards one goal” and
hence, more reliable. This reflects an instinctive behaviour to find
the “wisdom of the silicon crowd” more reliable, [78], and aligns
with empirical findings showing multi-agent reasoning often out-
performing single-agent approaches [22, 53, 55, 82]. However, this
heuristic also comes with a cognitive trade-off: more agents can
mean more reasoning paths and responses to process. Crucially,
participants wanted adaptive ensemble sizes tailored to task com-
plexity, requiring more agents for more complex tasks; and while
they did not always want to read every agent’s output, knowing
that multiple agents existed “behind the scenes” made the system
response feel more deliberated and, by extension, more trustworthy.
This highlights a classic cost-benefit tension in AI transparency: users
want to know that the system is deliberating, but do not necessarily
want to comb through all that deliberation. This also highlights
the risk of users relying on heuristics that may not hold, as larger
ensemble sizes may not always imply greater reliability. To de-risk
this, interfaces could surface only distinct lines of agent reason-
ing instead of raw agent counts, or present a few representative
rationales while indicating that a larger ensemble operated behind
the scenes. This aligns with our participants’ desire to know that
multiple agents deliberated, without being overwhelmed by every
output. We call on future work to investigate how best to convey
this information, preserving the perceived benefits of multi-agent
reasoning while reducing over-reliance on ensemble size as a proxy
for accuracy.
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6.2.2 Agent-Level Rationales Support Sensemaking and En-
hance User Agency, But Majority Heuristics Persist. Agent-
level rationales played a key role in helping users make sense of
multi-agent AI outputs. Interfaces that offered agent responses
without rationales (e.g., V2) provided surface-level transparency,
but left users unable to engage with or evaluate the AI’s reasoning.
In contrast, when agents offered brief explanations (e.g., V3), users
were better able to weigh competing reasoning paths, scaffold their
own decision-making, and retain a sense of agency over the final
decision. This aligns with sensemaking frameworks that emphasise
the importance of scaffolding rather than supplanting human rea-
soning [44]. Agent-level rationales invited users to deliberate while
keeping their mental workload under check, rather than leading to
indiscriminate reliance. Our participants used these rationales to
construct, test, and revise their own reasoning.

However, we also observed that in the absence of rationales,
majority agreement between the agents significantly boosted per-
ceived system reliability and often led users to dismiss dissenting
agents entirely, suggesting how users strongly rely on agent consen-
sus as a heuristic for reliability. This behaviour reflects well-known
social influence heuristics, such as the “bandwagon effect” where
individuals adopt majority views due to perceived social consensus
[37], and aligns with prior findings showing how users tend to con-
form to AI advice in objective tasks [26, 74]. However, the majority
decision may not always be accurate. Thus, to mitigate this risk
and reduce over-reliance on majority-based cues, interfaces could
clearly highlight reasoning diversity, for example, by presenting the
strongest dissenting/‘minority’ rationale, nudging users to inspect
‘both sides’ of the evidence rather than default to the majority.

We see these as promising directions for future work: to em-
pirically examine whether multi-agent rationales can reduce over-
reliance and lead to better decision outcomes, whether such ra-
tionales help users detect errors or merely increase confidence re-
gardless of accuracy, and how the majority heuristics we observed
can be leveraged to promote trust calibration. These findings also
echo recent calls to move beyond AI systems that merely make a
decision and explain it [61], and towards decision-support systems
that scaffold human reasoning in contextually-sensitive ways.

6.2.3 Explained Disagreement and Critique Convey That
The System is “Checking Itself” — Enhancing Trust, When
Presented Correctly. Visible agent disagreement was a double-
edged cue: it could either build or erode trust, depending on how
it was surfaced and explained. When an agent disagreed without
explanation, participants saw it as a sign of internal AI inconsis-
tency or failure, reducing their trust. Several expressed a preference
not to see such unexplained disagreement at all. However, when
the same disagreement was accompanied with agent-level ratio-
nales, i.e., agreeing and disagreeing agents explaining their reason-
ing, participants found it helpful and trustworthy. Disagreement
helped explore competing perspectives, evaluate uncertainty, and
refine users’ own reasoning. These perceptions were even more
pronounced when a dedicated critic agent critiqued all its peers:
the multi-agent system appeared trustworthy and honest because
it was “checking itself.” We observed more positives of explicit cri-
tiques: they helped users refine their own reasoning by surfacing
both sides of the argument, and only a small minority experienced a

decrease in perceived system capability after the critic highlighted
limitations.

Our findings align with long-standing research in collaborative
and group decision-making, which emphasises the epistemic value
of surfacing diverse opinions and disagreements [18, 79, 80]. These
findings also resonate with Reingold et al. [72], who observed that
while dissenting explanations reduced users’ trust in AI, they also
reduced overreliance — offering a potential path to more calibrated
trust.

Taken together, our results suggest that disagreement and cri-
tique are powerful epistemic signals, but only when well-explained
and well-structured. When appropriately surfaced, they can foster
healthy AI scepticism, highlight uncertainty, and act as cognitive
forcing functions that could reduce indiscriminate reliance onAI. To
avoid unintended trust erosion from observing disagreeing agents,
these signals should be accompanied by brief explanations that help
users understand the disagreement and interpret it as a deliberate
feature of the system’s reasoning process rather than as a limitation
or sign of failure. Future work should empirically examine whether
(and for whom) disagreement fosters calibrated trust. For instance,
users with low task domain expertise may benefit from disagree-
ment as a cautionary signal when they lack the skills to detect AI
errors. Designing systems that expose such disagreement without
overwhelming users remains an open and important challenge for
future work.

6.3 Multi-Agent Systems Surface Epistemic
Cues That Are Double-Edged and Must Be
Calibrated

Across all the interface affordances we examined (ensemble size,
rationales, disagreement, consensus, and aggregation) a consistent
pattern emerged: no cue functioned as a universally positive signal
of trustworthiness. Each offered distinct benefits in terms of estab-
lishing trust, but also introduced design trade-offs and risks. Their
impact depends on how they are surfaced and presented, when
they are shown, and how well they align with user expectations,
task demands, and cognitive bandwidth. What boosts trust in one
context could erode it in another; what supports sensemaking for
one user could overwhelm or mislead another.

This pattern reveals a central insight: epistemic signals in
multi-agent interfaces are inherently double-edged. Their
value lies not in their presence alone, but in how they are presented,
situated, and attuned to context. Designing for transparency in
multi-agent interfaces, then, is not about maximising visibility, but
enabling contextually-sufficient transparency — a level of process
insight that aligns with users’ information needs, and supports trust
and interpretability without inducing too much mental workload or
misplaced/unwarranted trust. We reinforce the central argument of
this paper: transparency in multi-agent LLM systems is not a binary
property to be maximised, but a dynamic, context-sensitive suffi-
ciency judgement. Designing for calibrated trust in such systems
requires a deep understanding of which interface cues users attend
to and how they can inadvertently introduce risks of overtrust.

Our work contributes a foundational mapping of these epistemic
cues, highlights their associated trade-offs and design tensions, and
offers recommendations to help de-risk them. Future work must
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build on this foundation, investigating how to surface these signals
in ways that are not only informative, but appropriately aligned
with user needs and task demands to help foster calibrated trust in
multi-agent AI systems.

6.4 Limitations
Our study involved predefined, bounded tasks with objectively
verifiable answers, enabling control and comparability across in-
terfaces. However, letting users interact with multi-agent systems
in self-directed tasks may surface different needs and behaviours.
Further, we explored key multi-agent affordances through specific
operationalisations (e.g., a fixed 3:1 majority in agreement) and
did not vary finer-grained configurations such as the degree of
consensus, or tested the effects of linearly increasing ensemble size
(e.g., sizes other than 4 or 8). This was a necessary design choice for
two reasons: first, our goal was to evaluate representative interface
designs that foreground different forms of multi-agent transparency
embedded with distinct epistemic cues, rather than exhaustively
test all combinations. Second, granularly varying ensemble size
or disagreement proportions across all variants would lead to an
impractically large number of interfaces and compromise our abil-
ity to use each interface variant as a focused probe. Thus, while
our interface variants were designed to capture a diverse range of
multi-agent configurations rooted in prior literature, they repre-
sent only a small subset of the broader design space. Future work
can build on our conceptual groundwork to examine how different
levels of disagreement, consensus, or agent count influence trust
perceptions, as well as explore more granular combinations across
the design dimensions.

Moreover, as with all qualitative, design-led, Comparative Struc-
tured Observation studies, our goal was to understand user be-
haviours, rather than to quantify causal effects. Nevertheless, this
method yielded rich insights into how users make sense of multi-
agent transparency, which future work can test empirically at scale.
Further, while our sample size (N=12) is consistent with guidance
on thematic saturation in qualitative research [11, 27] and compara-
ble to prior CSO studies in HCI [21, 88], it may limit the breadth of
perspectives captured. Lastly, all final AI outputs in our interfaces
were accurate. While this allowed us to isolate interface effects,
it leaves open how users interpret and calibrate trust when agent
errors are present and/or unevenly distributed within the ensemble.

7 Conclusion
Multi-agent LLM interfaces surface a rich variety of epistemic
signals — such as agent-level responses, disagreement, critique,
and consensus — which users actively interpret as cues for when
and how much to trust the system. Through a discovery-oriented,
design-led study, we unpacked how these signals are made sense of
in context, and what tensions emerge in the process. Rather than
treating transparency as a static property to be maximised, our
findings call for a more context-sensitive approach, one that treats
transparency as a sufficiency judgement shaped by task demands,
user preferences, and mental workload We highlight how interface-
level affordances can both boost and erode trust, and argue for
calibrated over maximum exposure. By understanding users’ inter-
pretive strategies, heuristics, and transparency preferences across

varied multi-agent interfaces, our work lays the groundwork for
more context-aware, human-centred approaches to designing trust-
worthy multi-agent AI. We invite future research to build on these
insights and test how transparency can be adaptively structured to
better support sensemaking, trust calibration, and decision quality.
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Appendix
A Prompt to GPT4-o for Stimuli Generation
“Generate text stimuli for a research study investigating how users
evaluate and interpret large language model (LLM) systems with
multiple agents. In this study, participants interact with simulated
multi-agent LLM interfaces to receive support on deductive reason-
ing tasks. These interfaces display will different different agents
responding to the same reasoning task.

Your task is to generate agent explanation texts (short rationales
that resemble an LLM’s response) as part of the experiment stimulus.
The reasoning task involves logical reasoning questions from the
LSAT examination. These questions present problem scenarios
followed by a question, with multiple choices presented (options
A–E). These questions assess logical reasoning, have exactly one
correct answer.

In the interfaces used in this study, four agents respond to the
same LSAT question: three select the correct answer and provide
valid rationales, while one selects an incorrect answer and provides
a compelling rationale that appears plausible. Plausible incorrect
rationales should be easy to generate since the logical reasoning
problems are fairly complex. Further, in one of the interfaces, there
will be a critic agent which evaluates each of the four agent’s ratio-
nales, surfacing flaws, gaps, or oversights in their reasoning. Your
job is to help generate these base + critical rationales.

Input you will receive:

• The full LSAT question text and its five answer options (A–E).
• The verified correct answer (e.g., “X”).
• The official LSAT explanation for the correct answer.
• A specific incorrect answer option for which you will gener-
ate a plausible rationale.

Your task consists of two parts:

(1) Generate four base rationale texts (R1–R4): R1, R2, and
R3 should each provide a distinct, logically valid rationale
supporting the correct answer. These should be faithful to
the official LSAT explanation but condensed and phrased
naturally. R4 should provide a plausible but incorrect ratio-
nale supporting the specified wrong option. It should appear
logical and persuasive. Each rationale must be a single sen-
tence, 15–17 words long, and follow a consistent tone, clarity
level, and reasoning depth. Do not label any rationale as
correct or incorrect in its text; each should stand alone and
be independently convincing.

(2) Generate four critique texts (C1–C4): These will be texts
that evaluate the quality of the four base rationales (R1–R4).
Each critique text should identify potential weaknesses, lim-
itations, incorrect assumptions, or vague reasoning in the
corresponding rationale. All critique texts must also be one
sentence of 15–17 words, written in natural, fluent English,
and comparable in tone and style to the base rationales.

Style and formatting guidelines:

• Write in fluent, natural English suitable for a chat-based LLM
interface. Use British English spellings.

• Maintain consistent structure, length, clarity, and reasoning
depth across all rationales and critiques.
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• Provide similar contextual detail and tone across all base
rationales, and similarly across all critical responses.

• Provide your output in the following format:
– R1: [Answer <X> is correct. 15–17 word rationale support-
ing correct answer]

– R2: [Answer <X> is correct. Distinct 15–17 word rationale
supporting correct answer]

– R3: [Answer <X> is correct. Distinct 15–17 word rationale
supporting correct answer]

– R4: [Answer <Y> is correct. Plausible but flawed 15–17
word rationale supporting incorrect answer]

– C1: [critique of R1]
– C2: [critique of R2]
– C3: [critique of R3]
– C4: [critique of R4]”

B Scales and Measures
These variables are self-reports, used to describe our sample.

• Demographics:
– Age: (text field)
– Gender: Man;Woman; Non-binary; Gender-diverse; Prefer
not to answer; Prefer to self describe: (text field)

• LLM Usage Frequency. Measured by asking the following
question: “How frequently do you use chatbots such as Chat-
GPT, Claude, Gemini, or similar?” on a 7-point scale: Never;
Less than once a month; A few times a month; About once a
week; A few times a week; About once a day; Multiple times
a day.

• Dispositional Trust in Automation (TiA-PtT).Measured
using the 3-item Propensity to Trust (PtT) subscale of the
Trust in Automation (TiA) Scale by Körber [46], rated on
a 5-point Likert scale, following prior work in human-AI
interaction [33, 68].

(1) One should be careful with unfamiliar AI systems. (reverse
coded)

(2) I rather trust an AI system than I mistrust it.
(3) AI systems generally work well.
• AI Literacy.Measured using a 4-item, 5-point Likert scale,
adopted from Yurrita et al. [105].

(1) I have a good knowledge in the field of artificial intelli-
gence.

(2) My current employment includes working with artificial
intelligence.

(3) I am confident interacting with artificial intelligence.
(4) I understand what the term artificial intelligence means.

C Participant Demographic and Dispositional
Measures

Table C.1 contains an overview of our participants’ demographic
and dispositional data.

Measure Participant Distribution / Summary (N =
12)

Age Mean = 27.4 years, SD = 2.4 years, Median =
28.5 years

Gender Women (n = 6, 50%), Men (n = 6, 50%)

LLMUsage Frequency Never (n = 0), Less than once a month (n =
0), A few times a month (n = 2, 16.7%), About
once a week (n = 0), A few times a week (n =
2, 16.7%), About once a day (n = 0), Multiple
times a day (n = 8, 66.7%)

Dispositional Trust in
Automation (1–5)

Mean = 3.03, SD = 0.72, Median = 2.83

Self-reported AI Liter-
acy (1–5)

Mean = 3.54, SD = 0.87, Median = 3.75

Table C.1: Participant demographic and dispositional mea-
sures.
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