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Abstract

Humans naturally seek to identify causes behind outcomes through
causal attribution, yetHuman-AI researchoftenoverlookshowusers
perceive causality behind AI decisions. We examine how this per-
ceived locus of causality—internal or external to the AI—influences
trust, and how decision stakes and outcome favourability moder-
ate this relationship. Participants (N=192) engaged with AI-based
decision-making scenarios operationalising varying loci of causality,
stakes, and favourability, evaluating their trust in each AI. We find
that internal attributions foster lower trust as participants perceive
the AI to have high autonomy and decision-making responsibility.
Conversely, external attributions portray the AI as merely “a tool”
processing data, reducing its perceived agency and distributing re-
sponsibility, thereby boosting trust. Moreover, stakes moderate this
relationship—external attributions foster even more trust in lower-
risk, low-stakes scenarios. Our findings establish causal attribution
asacrucialyetunderexploreddeterminantof trust inAI,highlighting
the importance of accounting for itwhen researching trust dynamics.
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1 Introduction

Consider an individual, John, bursting into laughter at a come-
dian’s joke. In this scenario, one could attribute the outcome—John’s
laughter—to the person himself (John) or the stimulus (the come-
dian’s joke). If John is the only one laughing and tends to laugh easily
at any comedian, then one would attribute the cause behind his
laughter internally to him, to his sense of humour. Alternatively, if
John, usually reserved at comedy shows, suddenly laughs alongside
the entire audience, then one might believe the comedian’s excep-
tional skills brought about John’s laughter, attributing the cause
externally to John. Both scenarios involve the same outcome—John’s
laughter—but our understanding of the outcome differs based on
where we attribute its causality [23]. Considering how percep-

tions of causality influence our understanding of everyday

events, howmight they impact our interactionswith and trust

in AI systems?

Attribution theory posits that humans instinctively seek to under-
stand the causes behind actions and outcomes [33]. This innate drive
for causal understanding, termed causal attribution, influences how
we attribute responsibility and, subsequently, how we assign blame
or praise [48, 57]. An intelligent agent could cause an outcome, yet
individuals could perceive its causal role differently. For example, if a
self-driving car brakes suddenly without an apparent obstacle, some
usersmight attribute the cause to an internal issue (e.g., limitations in
the car’s decision-making software),which could decrease their trust
in the system. In contrast, others may attribute the error to external
causes (e.g., poor road markings or inclement weather conditions),
potentially maintaining their trust in the system’s capabilities. This
presents anopportunity toempirically examinehowvariations in the
perceived locus of causality behind automated decisions—whether
seen as stemming from causes internal or external to AI—impact
trust in the AI.

Notably, the integration of AI-based decision-making in everyday
life is driven by the recognition that its adoption can reduce costs,
enhanceperformance, and facilitatemore objective decision-making.
However, AI systems can make mistakes, so end-users must discern
when to trust their output [16, 37]. In response, research efforts
have focused on identifying the factors that influence user trust
in AI, aiming to appropriately calibrate this trust to match system
capabilities [22, 45, 53, 66]. However, existing approaches to trust
calibration—often revolving around providing explanations [50, 51]
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or confidence scores [58, 83]—encounter critical challenges. Expla-
nations can paradoxically promote over-reliance by creating a false
sense of legitimacy [17, 52], while stated confidence scores are often
overshadowed by the performance of theAI observed in practice [80,
81]. While these methods aim to increase transparency, they fail to
account forhowindividualsperceiveand interpret the causal basis be-
hindAI decisions—whether theyperceive the cause behind anAI out-
come as originating fromwithin theAI itself (attributing it to theAI’s
algorithms and decision-making processes) or from external factors
(such as thedata theAIprocesses or the level of humanoversight) [70,
77]. Tomlinson and Mayer [70], in their trust calibration model, par-
ticularly theorise that trustmay declinemore sharplywhen negative
AI outcomes are attributed internally to the AI. However, the impact
of causal attributions on human-AI trust dynamics remains to be em-
pirically examined. Understanding this relationship could also offer
valuable insights for refining trust calibration approaches, ensuring
better alignment with user expectations and attribution behaviours.

Further, individuals are more likely to trust and accept favourable
AI decisions, a tendency knownas outcome favourability bias [10, 44].
Outcome favourability modulates trust in AI based on the advan-
tage or disadvantage resulting from the decision [75], but differing
causal attributions may further complicate this relationship. For
example, when the cause behind an unfavourable outcome is at-
tributed internally to the AI—i.e. to its decision-making process or
capabilities—trust may be impacted differently compared to when
an unfavourable outcome is attributed to factors external to the AI,
outside its locus of control. This raises the question: is trust in AI
shielded from the consequences of poor decision-making when individ-
uals perceive an external locus of causality? Additionally, individuals
are more inclined to trust and accept AI decisions in low-stakes con-
texts such as music recommendation [63], compared to high-stakes
contexts such asmedical diagnostics [31]where the consequences of
decisions are substantial. However, it remains unclear how trust is in-
fluencedby the consequencesor risks of thedecision-making context
when the locus of causality behind decisions is also manipulated.

Therefore, this work aims to bridge the aforementioned gaps by
systematically investigating how the attribution of causality shapes
trust in AI systems and how decision stakes and outcome favourabil-
ity impact this relationship.We aim to answer the following research
questions:

• RQ1:How does the perceived locus of causality behind AI
decisions—attributed internallyorexternally to theAI—influence
trust in the AI?

• RQ2: How do contextual factors, such as the stakes of the
decision-making context and the favourability of the AI out-
come, moderate the impact of causal attributions on trust in
AI?

We conducted a 2 (causal attribution: internal vs. external) × 2 (de-
cision stakes: high vs. low) × 2 (outcome favourability: favourable vs.
unfavourable) within-subjects scenario-based experiment with 192
participants. Scenarios introduced a high- or low-stakes decision-
making context in which an AI operated, subsequently revealed
the AI’s decision, and signalled a specific locus of causality behind
this decision—operationalising our three independent variables. The
locus of causality was operationalised using Kelley’s framework of
causal attribution [32], which outlines three information variables:

consensus (whether the AI’s decision aligns with those of other sys-
tems), distinctiveness (whether the decision is specific to the given
input), and consistency (whether the decision remains stable over
time and after repeated exposure to the same input). Internal attribu-
tions signalled that the AI’s decision stemmed from its inherent algo-
rithms and capabilities (low consensus, lowdistinctiveness, and high
consistency), while external attributions highlighted the influence of
external factors, such as data quality or environmental factors (high
consensus, high distinctiveness, and high consistency). A manipula-
tion check confirmed that our scenarios robustly operationalised our
manipulations as intended. For each scenario, after learning about
the AI’s decision and an associated locus of causality, participants re-
ported their Situational Trust in theAI. To deepen our understanding
of trust dynamics, participants also answered open-ended questions
exploring the factors influencing their trust in each scenario.

Our findings demonstrate a critical relationship between partic-
ipants’ perceptions of causality and their trust in AI systems. When
participants attribute the locus of causality behind an AI’s deci-
sion internally to the AI, their trust is notably lower. In such cases,
participants perceive the AI as more autonomous and responsible,
having full control and agency in the decision-making process. This
perception raises concerns about the AI’s excessive autonomy and
insufficient human oversight, consequently reducing participants’
trust. Conversely, when participants attribute causality externally to
anAI, they trust theAI substantiallymore. In such cases, participants
distribute responsibility among various entities and stakeholders
in the decision-making ecosystem, and perceive the AI more as “a
tool” that processes data, operating under the influence of factors
beyond its control, such as the quality of data supplied to it. This
external attribution of causality reduces perceived AI agency and
reassures participants about the AI’s role in the decision-making
process, thereby enhancing their trust.

Additionally, we observe that the effect of causal attribution on
trust varieswith the decision stakes.While external attributions gen-
erally fosterhigher trust, this effect ismorepronounced in low-stakes
scenarios, where the perceived risk and consequences of trusting the
AI are less severe compared to high-stakes scenarios. Furthermore,
our analysis reveals no significant interaction between outcome
favourability and causal attribution, showing no evidence of a dif-
ferential effect of causal attribution on trust across favourable and
unfavourable decisions. This highlights the role of causal attribution
as an important, stable determinant of trust. Lastly, our findings
reiterate the impact of decision stakes and outcome favourability on
trust: participants exhibited higher trust in low-stakes scenarios and
favourable decisions than in high-stakes scenarios and unfavourable
decisions.

Our work makes the following contributions. First, we identify
causal attribution as a critical yet previously overlooked determi-
nant of trust in AI.We show that trust varies based onwhether users
perceive decisions as stemming from the AI’s own capability and
algorithms, or as reliant on external factors such as data quality and
stakeholders. Second, we uncover how causal attributions shape
perceptions of AI agency, autonomy, responsibility, and the extent
of human oversight in decision-making. Through several interesting
qualitative insights, we discuss how different loci of causality lead
participants to hold the same AI differently responsible for its deci-
sions, ultimately impacting the scrutiny extended to and trust placed
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in it. We advocate for framing AI decisions to clearly convey causal-
ity and shared responsibility as an effective method to boost trans-
parency and foster (appropriate) trust inAI. Third, by demonstrating
how attributing excessive agency to AI can lead to decreased trust
and increased scepticism, our work emphasises the need to shift the
discourse away from portraying AI systems as overly autonomous
and agentic. Fourth, we highlight how the impact of causal attribu-
tion on trust varies with decision stakes—underscoring the need for
contextual trust-building strategies. While there is no silver bullet
for fostering trust in high-stakes environments evenwhenAI perfor-
mance warrants it, explicating causality can be effective, especially
when complemented by other transparency-boosting strategies.

Ultimately, our results demonstrate that users’ trust in AI is sen-
sitive to their understanding of the causal mechanisms behind AI
decisions, and advocate for their transparent communication. We
underscore the need for future trust calibration efforts to consider
where users attribute causality and account for these perceptions
when studying trust dynamics.

2 RelatedWork

2.1 Trust in AI Systems and its Determinants

In this work, we adopt the definition of trust proposed by Lee and
See [37], who describe it as “an attitude that an agent will achieve
an individual’s goal in a situation characterised by uncertainty and
vulnerability.” Stemming from this notion, multiple definitions and
decompositions of human-AI trust have been proposed, all converg-
ing toward the central elements of uncertainty, vulnerability, and
expectations [72]. Trust, therefore, emerges as a dynamic, temporal
characteristic of any human-AI interaction fraught with uncertainty
and vulnerability. As AI agents become increasingly intertwined
with our everyday lives, aligning user trust with the capabilities
and limitations of such AI agents becomes crucial. Hoff and Bashir
[24] further classify trust in automated systems into distinct types,
including dispositional and situational trust.

Dispositional trust refers to an individual’s inherent tendency to
(dis)trust automation in general, while situational trust is shaped
by the specific contextual factors surrounding human-AI interac-
tion, such as task complexity, AI performance, and the perceived
risk associated with the decision-making process [24]. Importantly,
different levels of dispositional trust can result in both automation
bias, where individuals place unwarranted trust in automated advice
because of the perception that automation is superior [19, 49], or
algorithm aversion, where users are sceptical of automated advice
and disregard it even when it may be reliable [30, 56]. Thus, while
dispositional trust might predispose individuals towards a certain
level of trust in AI, situational trust adjusts based on the context of
each interaction with a particular AI. In this work, we investigate
and consider both dispositional and situational trust, aligning with
Hoff and Bashir’s call for research that examines the various layers
of end-users’ trust in automation to appropriately understand how
trust is modified through interactions with AI systems [24].

2.1.1 Determinants of Trust. Research has explored methods to
calibrate trust in AI agents, employing both ‘endo’ (during the inter-
action) and ‘exo’ (before or after the interaction) techniques, as well
as static and adaptive approaches (see Wischnewski et al. [78] for

a comprehensive overview). Trust calibration approaches typically
centre around the various determinants of trust identified so far [36].
These determinants pertain to the decision-making process or perfor-
mance of an AI [78], communicated through explanations [50, 51]
and confidence scores respectively [58, 83]. However, despite their
promise, these approaches encounter critical challenges. Explana-
tions canbackfire and create a false sense of legitimacy, inadvertently
promoting over-reliance on AI [17, 52]. Moreover, the influence of
stated confidence scores on trust can be overshadowed by the AI ac-
curacy or behaviour observed in practice [80, 81]. A growing body of
research underscores the importance of perceived responsibility and
accountability in shaping user trust in AI systems [6, 12, 68]. When
users perceive probabilistic AI systems as autonomous entities capa-
ble of making decisions, questions around perceived responsibility
and trust become increasingly complex [20, 26, 69]. Who do users
hold responsible for anAI’s errors—the system itself or its human de-
signers? Such individual responsibility ascriptions may also directly
influence trust in manyways, as perceptions of responsibility can af-
fect users’ willingness to rely on AI systems. For example, Robinette
et al. [60] find that in emergency scenarios, users who attributed a
robot’s decisions to the (assumed) competence and accountability of
its human creators were willing to follow the robot into increasingly
dangerous situations. In fact, users’ trust is sensitive to even subtle
indicators of agency (and indirectly, causality): framing AI systems
as ‘intelligent’ or ‘autonomous’ agents can significantly shape per-
ceptions of their trustworthiness, albeit to different extents based on
individual and contextual factors [26, 27]. However, the impact of
perceived causality on trust remains to be systematically examined.
Much of the current research on human-AI trust overlooks where
users perceive the causality behind AI decisions to lie, often failing to
account for whether users think “the AI” itself is making decisions
or if decisions are influenced by factors outside its locus of control.

Attribution theory suggests that individuals naturally tend to seek
the causes behind actions and outcomes [33]. This drive for causal
understanding informs how they assign responsibility and distribute
blame or praise [48, 57]. Importantly, at the core of responsibility
attribution lies the human ability to construct causal narratives that
explain others’ actions [33]. Causality, thus, is a core concept that
governs judgements of responsibility [18]. Responsibility attribu-
tion, then, becomes a proximal consequence of causal attribution.An
intelligent agent could cause an outcome, yet individuals could per-
ceive its causal role in theprocess differently. This raises thequestion:
would individualsperceivingdifferent lociof causalitybehind

AIdecisionsexhibitdifferent levelsof trust inthesameAI?Can
perceptions of causality be a significant, yet previously overlooked,
determinant of trust? Moreover, current approaches to foster appro-
priate trust in AI, such as explanations or confidence scores, focus
primarily on observable systemperformance or process but overlook
deeper user perceptions about the causal mechanisms behind AI de-
cisions [24, 37]. Thus, understanding how causal attributions shape
trust in AI could offer valuable insights to refine these approaches,
aligning themwith individual user perceptions of causality.

2.2 Attributing Causality Behind Outcomes

Weiner’s causal attribution theory [77] explains how individuals
make sense of their experiences by attributing causes to behaviours
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and events. He posits that individuals respond to outcomes, espe-
cially negative ones, by identifying their causes (i.e., attributing their
causality to something) and then evaluating these causes along three
dimensions: locus of causality (whether the cause is internal or
external to the agent), controllability (the degree of control the agent
has over the outcome), and stability (whether the cause is constant
or variable). Of particular interest to this work is the locus of causal-
ity dimension. An individual could attribute the cause of an AI’s
decision as either being internal to the AI (i.e., to factors pertaining
to the automation itself, such as its programming logic) or external
to the AI (i.e., to situational factors, such as the quality of the data
it is trained on).

Building upon Weiner’s theory, Tomlinson and Mayer [70] in-
troduced a causal attribution model specific to trust repair in inter-
personal relationships. This model integratesWeiner’s attribution
dimensions with the trust feedback loop fromMayer et al. [47], il-
lustrating how trust evolves through a cyclic process of risk-taking,
outcome evaluation, and trust adjustment based on perceived trust-
worthiness. Trustworthiness itself is assessed through the lens of an
agent’s ability, benevolence, and integrity, with these perceptions di-
rectly influencing trust levels. According to Tomlinson and Mayer’s
[70] model, if end-users believe that a negative decision by an AI is
due to theAI’s own capabilities, i.e., they ascribe an internal causality
to the outcome, their trust in the AI is likely to decrease. Conversely,
if the cause of the negative decision is perceived as external to the
AI, their trust in the system may not necessarily diminish. This
presents a novel opportunity to examine the extent to which

users’ trust in an AI is tied to the perceived locus of causality

behind its decisions.
Kelley [32] outlined three information variables that affect how

people assign causality—namely, consensus, distinctiveness and
consistency. This information model allows three possible ways
of attribution, based on the factor that caused a variation in some
effects: (a) over decision-making entities (fromwhich consensus is
derived); (b) over stimuli (fromwhich distinctiveness is derived); and
(c) over time/interactions (fromwhich consistency is derived). More
specifically, consensus pertains to whether a response aligns with
that of others facing the same stimulus, distinctiveness refers to
whether a response is associated distinctively with the stimulus,
and consistency deals with whether the response is consistent over
time and after multiple exposures to the same stimulus. These three
variables thus signal the attribution of causality behind a decision as
follows:

• Internal Attribution: Users are more likely to attribute the
cause as internal to the decision-making entity when pre-
sented with information that indicates low consensus, low
distinctiveness, and high consistency [23, 32]. Consider the
scenario where a student, Alex, fails a maths exam. In this
scenario, the outcome—failing the exam—could be attributed
toAlex themself or the stimulus (the exam). Ifmost classmates
passed the examwhile Alex did not (low consensus), Alex also
struggles in other subjects (low distinctiveness), and if Alex
consistently found themaths examdifficult acrossmultiple at-
tempts (high consistency), then the poor performance is likely
attributed to factors internal to Alex, such as their insufficient
preparation or understanding of the subject matter.

• External Attribution: Users are more likely to attribute the
cause as external to the decision-making entity when pre-
sented with information that indicates high consensus, high
distinctiveness, and high consistency. Consider another ver-
sion of the scenario where Alex fails a maths exam. If most
classmates also failed the exam (high consensus), Alex gener-
ally excels in other subjects (high distinctiveness), and if Alex
consistently found the examdifficult acrossmultiple attempts
(high consistency), then the poor performance is likely attrib-
uted to external factors, such as the intrinsic difficulty of the
exam or insufficient teaching, rather than internally to Alex.

In this work, we utilise the aforementioned three information
variables to manipulate the causal attribution behind AI decisions
to be either internal or external to the AI.

2.3 Contextual Factors affecting Perceptions

of Trust in Automated Decision-Making

Factors related to the decision-making context play a crucial role in
shaping users’ trust inAI. Firstly, the favourability of an automated
outcome impacts users’ trust and fairness perceptions [75]. Individ-
uals are more inclined to trust and accept AI decisions when the
outcomes align with their interests, a tendency known as outcome
favourability bias [10]. This bias can complicate trust appropriate-
ness, as itmayovershadow the objective evaluation of anAI system’s
trustworthiness, particularly when it provides an unfavourable out-
come. While outcome favourability bias influences trust based on
the direct benefit or loss experienced by users, varying causal attribu-
tions can further complicate this relationship. BuildingonTomlinson
andMayer’s causal attributionmodel [70], which theorises that trust
may decline more sharply when unfavourable outcomes are attrib-
uted internally to the AI, we hypothesise that outcome favourability
maymoderate the relationship between causal attributions and trust.
In particular, when an unfavourable outcome is attributed inter-
nally to the AI—perceived as a failure of the system’s capability or
decision-making process—trust may decrease more sharply com-
pared to when the unfavourable outcome is attributed to external
factors beyond the AI’s control. However, it remains to be empiri-
cally examined how internal and external loci of causality behind
AI decisions differently influence trust, when these decisions are
favourable or unfavourable. In this work, we aim to bridge this gap.

Secondly, trust in AI systems is influenced by the stakes of the
decision-making context [1, 31], which pertain to how grave the
consequences of a decision can be. In high-stakes domains such as
hiring [35, 40], medical diagnostics [11, 39, 50] and criminal justice
[14, 43], the outcomes of AI decisions carry significant implications
for individuals’ lives. Conversely, in lower-stakes domains such as
personalised shopping [42] and music recommendations [63], the
consequences ofAI decisions are less severe, often only violating per-
sonal preferences at their worst. AI systems involved in low-stakes
decision-making are generally perceived as more trustworthy than
those in high-stakes situations, where users are more sensitive to
perceived risks [2]. This heightened risk sensitivity in high-stakes
contexts suggests that perceived decision stakes may intensify the
impact of causal attributions on trust. Specifically, as the potential
risks or consequences associated with an AI’s decision increase, the
role of causality may become more critical in shaping users’ trust.
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This warrants further exploration into how stakes might moder-
ate the relationship between causal attribution and trust, a gap we
address in this work.

Pop et al. [55] conducted a preliminary investigation into how
(solely) an internal causal attribution impacted the perceived relia-
bility of an agent, finding that internal attributions make individuals
with a higher dispositional trust in automation less sensitive to
changes in AI accuracy. Our study builds upon their work by explor-
ing both internal and external causal attributions and their impact on
trust. This broader approach addresses a crucial gap by investigating
how trust is shaped not only by factors intrinsic to the AI but also
by those external to its locus of control. Another significant limita-
tion of existing research is that it does not consider the interplay of
causal attributions with decision stakes and outcome favourability.
These factors are intrinsically intertwined in real-world AI-based
decision-making, and their collective influence on trust dynamics
can differ markedly from their individual impacts.

Therefore, in this work, we address the above gaps by systemati-
cally evaluating the effects of causal attribution, decision stakes, and
outcome favourability on trust. Our goal is to examine how each fac-
tor individually influences trust perceptions across scenarios, while
also examining whether the impact of causal attributions on trust is
moderated by stakes and favourability. Additionally, we investigate
how dispositional factors, such as an individual’s general propensity
to trust automation [34], shape trust in this experimental context.

3 Method

To explore how causal attributions, decision stakes, and outcome
favourability impact trust, we conducted a within-subjects survey-
based experiment employing a mixed-methods design. This ap-
proach allowed us to collect both quantitative scores of trust percep-
tions and qualitative insights into the reasons behind these percep-
tions. In the following sections,we present the design considerations
for crafting scenarios, discuss experimental manipulations, report
manipulation check findings, and describe the main experiment
procedure.

3.1 Scenario Selection and Design

We adopted a scenario-based approach which is widely employed
in HCI research to elicit user opinions, attitudes, and trust in a con-
trolled manner [2, 7, 31, 38, 62]. This choice is also supported by the
finding that participants’ behaviours during scenario-based studies
often mirror their real-world reactions and decision-making pro-
cesses [38, 79].

3.1.1 Operationalising Causal Attributions, Stakes, and Outcome
Favourability. We chose four scenario contexts commonly involving
AI-based decision-making, and designed scenario variants for each
combinationofdecision stakes,outcome favourability, and causalattri-
butions.We operationalised stakes through the high and low severity
or risk posed by the scenario context—our two high stakes scenarios
comprised (1) medical diagnostics and (2) hiring decisions, while the
two low stakes scenarios involved (3) music recommendations and
(4) weather-based clothing recommendations [31, 62]. Further, we
manipulated outcome favourability by designing AI decisions that
have a positive (favourable) or negative (unfavourable) impact on the

human, such as approving a candidate to be hired for a job versus re-
jecting them. Lastly, causal attributionswere signalled using Kelley’s
framework of three information variables: consensus, distinctiveness,
and consistency, that govern howwe ascribe causality. The high and
low values assigned to these variables follow Kelley’s foundational
definitions [32], and are further validated by additional research
[23, 55]. An internal attribution indicated that decisions stemmed
from the AI’s inherent capabilities and algorithms, whereas an exter-
nal attribution suggested decisions were dependent on external fac-
tors, such as the quality of data supplied by external entities (e.g., the
meteorological department in scenarios involving ourWeather AI).
Table 1 illustrates howwe operationalised causality by detailing how
each variable was expressed in the scenarios and providing example
sentences from the high-stakes medical diagnostics scenario. We
note that, since consistency represents the stabilityof anAI’sdecision-
making across similar cases over time, it is held high and constant
acrossbothattributions toemphasise this stability, and toconvey that
the locus of causality remains constant and unchanging (i.e., it does
not shift between internal and external within an interaction) [32].

3.1.2 Scenario Design and Creation. We systematically fixed both
the participant’s and the AI’s role across scenarios to eliminate any
confounding influences and ensure that the observed participant be-
haviourswere attributable solely to our experimentalmanipulations.
The roles are as follows:

• Participants always assume the role of an actor within the
scenario, being directly impacted by the AI’s decision. This
design choice follows similar work [62] and aims to minimise
the potential influence of the actor-observer bias, wherein
individuals tend to attribute their own actions to situational
(external) factors and others’ actions to their personal (inter-
nal) traits [29].

• The AI always functions as the decision-maker [21]. This
design choice eliminates any potential confounding effects
that might stem from shared responsibility in collaborative
decision-making between the participant and the AI [41, 82].

We structured each scenario as follows: first, the decision-making
context and the AI were introduced, highlighting how the human
would be subject to the AI’s decision, operationalising our indepen-
dent variable decision stakes. Subsequently, the AI’s decision was
revealed, operationalising our second independent variable outcome
favourability, and then a specific locus of causality behind this deci-
sion was signalled, operationalising our third independent variable
causal attribution. We utilised two levels each for decision stakes
(high or low), outcome favourability (favourable or unfavourable),
and causal attribution (internal or external), with two distinct sce-
narios for each stake level, necessitating the generation of 16 unique
scenarios to cover all variable combinations.

To generate the 16 scenario texts, we utilised ChatGPT (GPT-4), a
large languagemodel trained byOpenAI 1.We iteratively refined our
prompts to specify desired scenario characteristics, definitions of
independent variables, experimental manipulations, and additional
contextual details. The complete prompt and the final scenario texts
are included in Appendix A. We reviewed the generated scenario

1https://openai.com/gpt-4
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Table 1: Kelley’s three information variables (consensus, distinctiveness, and consistency) that influence how we perceive

causality behind decisions, their interpretation, and operationalisation in our scenario texts.

Locus of causality Kelley’s information variables and high/low values, collec-

tively signalling a locus of causality [32]

An example operationalisation of these variables, in the

medical diagnostics scenario

Internal to the AI

↓ LowConsensus: The AI’s decisions frequently differ from those
made by other similar AI systems analysing the same input data.

“MediScan AI frequently provides diagnoses that differ from those
given by other diagnostic AIs for similar patient data.”

↓ Low Distinctiveness: The AI’s behaviour is not distinct, i.e.,
it remains consistent across different situations, suggesting that
the behaviour is a characteristic of the AI itself rather than being
influenced by situational factors.

“MediScan AI’s detection performance remains the same irrespective
of the patient data it is assessing.”

↑ High Consistency: The AI consistently makes the same
decisions when presented with the same input, highlighting stable
and predictable behaviour.

“Whenanalysing the same set of patient records repeatedly,MediScan
AI provides the same diagnosis.”

External to the AI

↑High Consensus: The AI’s decisions align with those made by
other similar AI systems analysing the same input data.

“MediScan AI’s diagnoses are frequently consistent with those given
by other diagnostic AIs for similar patient data.”

↑High Distinctiveness: The AI’s behaviour changes significantly
with different inputs or conditions, suggesting that its decisions are
largely influenced by the specifics of the current situation rather
than its inherent attributes.

‘‘MediScan AI’s detection performance only varies depending on
the patient scans and data the clinic supplies to it.”

↑ High Consistency: The AI consistently makes the same
decisions when presented with the same input, highlighting stable
and predictable behaviour.

“Whenanalysing the same set of patient records repeatedly,MediScan
AI provides the same diagnosis.”

texts to ensure alignment with our instructions and study require-
ments. Utilising a languagemodel to generate scenario texts allowed
us to maintain consistency across scenarios, minimising unintended
variability and ensuring variations in participant responses can be
attributed to our manipulations rather than random differences in
stimulus wording, following past research [8, 15].

3.2 Manipulation Check

3.2.1 Method. We conducted a series of pilot tests and a manip-
ulation check to ensure the generated scenarios accurately opera-
tionalised our independent variables and our manipulations were
perceived as intended. Feedback from the pilot testing helped us
disambiguate confusing sentences and enhance clarity. For the ma-
nipulation check, each participant was presented with four of the 16
scenarios, each featuring a distinct combination of our independent
variables. This selection was structured to ensure all participants
equally experienced internal and external causal attributions, high
and low stakes, and favourable and unfavourable outcomes. We ran-
domised the order in which we presented the scenarios to control
for ordering effects. Participants were asked to read the scenario,
imagine themselves in the given situation, and report their percep-
tions of each AI decision’s stakes and locus of causality. Outcome
favourability was not subjected to amanipulation check because the
favourability of the AI’s decision was explicit within scenario texts.

3.2.2 Measures and Participants. For perceived stakes, participants
rated the significance of the consequences of the AI’s decision on a
4-point scale ranging from1 (“Not significant at all”) to4 (“Very signif-
icant”), following past research [2, 62]. For the locus of causality, we
adopted Russell’s causal dimension scale [61], specifically the ‘locus

of causality’ sub-scale, which consisted of three items rated on 9-
point semantic differential scales. Consequently, the locus of causal-
ity scores ranged from 3 to 27, with higher scores indicating partic-
ipants attributed the decision internally to the AI, and lower scores
suggesting attribution to factors external to the AI’s locus of control.

Werecruited24participantswhowere located in theUnitedStates,
were native English speakers, and had a platform approval rating
≥ 98%, through the crowdsourcing platform Prolific 2. Participants
took amedian time of 6minutes to complete the survey and received
US$2 for participation.

3.2.3 Results. AWilcoxon signed-rank test revealed a statistically
significant difference in how participants perceived the impact of
decisions between high (Median = 4,M = 3.68, SD = 0.46) and low
(Median = 2, M = 2.35, SD = 0.83) stake scenarios (V = 850.5, p <
.001). This finding validates our stakes manipulation; high stakes
scenarioswere indeed regarded byparticipants as considerablymore
consequential than their low stakes counterparts (Figure 1 (left)).
Further, we conducted a paired t-test to verify the effectiveness of
our causal attribution manipulation. Results showed a statistically
significant difference in the perceived locus of causality between
scenarios designed with internal attributions (M = 22.16, SD = 4.93)
and those with external attributions (M = 12.29, SD = 6.50) (t(47) =
7.54, p < .001, 95% CI between 7.24 and 12.51). Since higher scores
on the causal scale indicate an internal attribution, these findings
validate our causal attribution manipulation: scenarios intended to
portray a locus of causality internal (external) to the AI were indeed
perceived as such by participants (Figure 1 (right)).

Given these findings, we are confident that our scenarios effec-
tively operationalised our intended experimental manipulations and
were thus suitable for the main experiment. The full scenario texts
are included in Appendix B.

2https://www.prolific.com/
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Figure 1: Manipulation check outcomes. (left): Comparison of perceived stakes (1 = Very Low, 4 = VeryHigh) against the stakes

operationalised in the scenarios. (right): Comparison of perceived causal attributions (lower scores = external attribution, higher

scores = internal attribution) against attribution intended through the scenarios.

3.3 Main Experiment

The main experiment employed a 2 (causal attributions: internal vs.
external)× 2 (decision stakes: high vs. low)× 2 (outcome favourability:
favourable vs. unfavourable) within-subjects factorial design. We
deliberately did not introduce a condition where causality was not
signalled. Past research suggests that in the context of AI systems,
the absence of causal information is rarely ‘neutral’ and can lead
to assumptions or default attributions based on individual biases or
past experiences [55], which could confound the causal impact we
aim to measure.

In addition to testing the direct influence of these three binary
predictors on situational trust in AI, we also sought to investigate
how the impact of causal attribution is moderated by the stakes and
the favourability of the decision. Thus, we examined two interaction
effects, each exploring the interplay between attribution and stakes,
and attribution and favourability. We did not examine a three-way
interaction (stakes, favourability, and attribution) as no strong theo-
retical or empirical basis in the literature supports a jointmoderation
effect of both favourability and stakes on how causal attribution im-
pacts trust in human-AI interaction. To calculate our sample size,
we utilised the R package InteractionPoweR [4], which accounts
for the larger sample size requirements of interaction effects and
allows variables to be non-continuous (i.e., binary or ordinal) [5],
both requirements of our experimental setup. The minimum recom-
mended sample size was 182 participants, considering an 𝛼 = 0.05,
and a power of 0.8 [13, 67, 71]. To ensure balance across our exper-
imental conditions, we conservatively recruited 192 participants,
with a mean age of 40.19 years (SD = 14.35).

We deployed our study on Prolific, utilising the same participant
screening criteria as our manipulation check, and recruited an equal
number of men andwomenwho had not participated in ourmanipu-
lation check. Participants joined our study exactly once, and passed
at least one of two attention checks, thus no data was excluded from
analysis. Participants took a median time of around 18 minutes to
complete the survey and were compensated US$4.70 for their time,
well above the minimum hourly wage recommended by Prolific 3.
Our university’s Human Ethics Committee approved the study.

3https://researcher-help.prolific.com/en/article/9cd998

3.3.1 Measures. Dispositional Trust:We captured participants’ dis-
positional trust inautomationusing theTrust inAutomation-Propen-
sity to Trust (TiA-PtT) questionnaire [34] (Fig 2 (a)), as disposi-
tional trust is known to influence trust experienced in AI systems
[52, 53, 74]. This measure captures an individual’s general propen-
sity or inclination to trust automation, irrespective of the specific
context or type of technology.

Situational Trust: Captured after the AI’s decision and the asso-
ciated causal attribution are revealed, Situational Trust reflects the
actual trust a participant experiences in the AI post-decision [24]. To
measure this, we employed the TXAI scale [25], which has been val-
idated specifically for use in Human-AI contexts by Perrig et al. [54].
Following their recommendations, we excluded the potentially prob-
lematic scale items they identified, ensuring the use of a robust and
reliable instrument to measure trust across our scenarios. The resul-
tant 4-itemTXAI questionnairewas administered on a 5-point Likert
scale ranging from 1 (“Strongly disagree”) to 5 (“Strongly agree”).
In our study, the TXAI scale demonstrated high internal reliability
with a Cronbach’s 𝛼 of 0.95 (95% CI between 0.94 and 0.96).

3.3.2 Procedure. Fig 2 illustrates the complete experiment flow.
Each participant was assigned one level of decision stakes: high vs.
low, outcome favourability: favourable vs. unfavourable, and causal
attributions: internal vs. external for every scenario (Fig 2 (b, c, d)).
Each participant engaged with four scenarios, selected in a strategi-
cally counterbalanced way to ensure every level of our independent
variable was encountered an equal number of times by every partic-
ipant. This counterbalancing controlled for potential order effects
and provided a balanced representation of conditions across the
participant pool.

Thesurveybeganwithapre-taskquestionnaire (Fig2 (a)) togather
participants’ demographic information and their Dispositional Trust
(TiA-PtT). We then informed participants that they would be pre-
sentedwitha seriesof scenarios involvingAI-baseddecision-making,
instructing them to imagine themselves in these contexts and answer
questions that followed.

Participants read each scenario, which introduced the decision-
making context, subsequently revealing the AI decision and sig-
nalling a locus of causality behind it (Fig 2 (e)). Participants were
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Figure 2: The full experiment flow. All participants view four scenarios in a randomisedmanner, with combinations of stakes,

outcome favourability, and causal attribution strategically counterbalanced across participants. (a): Pre-task questionnaire,

demographic data andDispositional Trustmeasured. (b, c, d): For each scenario, a combination of decision-making stakes (low
or high), outcome favourability (favourable or unfavourable), and causality behind the decision (internal or external to the AI)

chosen for each participant. (e): Corresponding scenario text presented, describing the decision-making context, subsequently

revealing the AI’s decision, and signalling a locus of causality behind it. (f): Participants’ Situational Trust in the AImeasured.

(g): Process repeated for all four scenarios seen by a participant. (h): Post-task questionnaire and debriefing.

thenasked to report perceptionsof theirSituationalTrust in thegiven
AI (Fig 2 (f)). These Likert scales included an attention-check ques-
tion at random, asking participants to select a specific scale response.
Each participant was presented with two attention-check questions.

Following each scenario, participants responded to two open-
ended questions specifically exploring the factors that influenced
their trust in the given AI. At the study’s conclusion, after all four
scenarios were shown, two more open-ended questions were asked,
which encouraged participants to reflect on their trust perceptions
across the AIs in the different scenarios and describe how they per-
ceived causes behind these automated decisions (Fig 2 (h)).

4 Results

We employ a Cumulative Link Mixed Model (CLMM) to investigate
how the perceived locus of causality behind AI decisions (RQ1) and
contextual factors such as the decision stakes and outcome favoura-
bility (RQ2) influence Situational Trust in AI. We further perform
post-hoc analyses to obtain pairwise contrasts between different
levels of our independent variables and report the corresponding Es-
timatedMarginalMeans (EMM).Details of participantdemographics
are presented in Appendix C.

4.1 Model Construction

Participants’ Situational Trust in AI (Section 3.3.1) formed our de-
pendent variable. The scale comprised four 5-point Likert scale
items, each ranging from 1 (indicative of low perceived trust) to
5 (indicative of high perceived trust). Given their ordinal nature,
we employed a Cumulative Link Mixed Model (CLMM) to investi-
gate the effects of the independent variables stakes, favourability,
and attribution on Situational Trust. In this model, we also included
Dispositional Trust (TiA-PtT) to account for how participants’ gen-
eral disposition to trust automation may impact their Situational
Trust. Despite the high internal consistency and reliability of our

trust scale (Cronbach’s 𝛼 of 0.95, 95% CI between 0.94 and 0.96),
we included question IDs (QID) of scale items as random effects
in our model to account for any potential variability in responses
that could stem from specific scale items. Additionally, participant
IDs (PID) were incorporated as random effects to control for in-
dividual differences and potential correlations amongst repeated
measurements from the same participant. The resultant CLMM func-
tion was as follows: Situational_Trust ∼ TiA-PtT + Stakes
+ Favourability + Attribution + Attribution:Stakes +
Attribution:Favourability + (1|QID) + (1|PID).

We employed the statistical R package ordinal to build our
CLMM.We calculated the Variance Inflation factor (VIF) to check for
multicollinearity across the independent variables, and the obtained
VIF values ranged from 1.00 to 1.51, well below the commonly used
threshold of 5 to detect multicollinearity [59].

4.2 Quantitative Results

The results of our CLMM analysis are presented in Table 2, and Es-
timated Marginal Means (EMMs) obtained from post-hoc analyses
are illustrated in Figure 3.

We observed a statistically significant main effect of stakes on
Situational Trust (𝛽 = 1.510, SE = 0.102, p < 0.001). Participants were
more likely to trust AI in low stakes scenarios (EMM = -0.140, SE =
0.146) compared to high stakes scenarios (EMM = -1.32, SE = 0.148),
as illustrated in Figure 3 (a). Further, we found a significant main
effect of outcome favourability on Situational Trust (𝛽 = -2.348,
SE = 0.107, p < 0.001). Participants exhibited lower trust in AI when
its decision was unfavourable (EMM = -1.888, SE = 0.150), compared
to favourable (EMM = 0.427, SE = 0.146), as depicted in Figure 3 (b).

Imperatively, we observed a significant main effect of causal
attribution on Situational Trust (𝛽 = -0.314, SE = 0.116, p = 0.006).
Participants experienced greater trust in AI when they perceived
the locus of causality behind decisions to lie external to the AI (EMM
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Table 2: Effect ofpredictors onparticipants’ SituationalTrust perceptions. Statistically significantmainand interactioneffects (p <
0.05) are inbold.The signof the estimate (+/-) denotes thedirectionof the relationshipbetween thepredictor and SituationalTrust.

Variable Estimate Std. Error p-value

Baselines:
Stakes = High, Favourability = Favourable, Attribution = External

Stakes = Low 1.510 0.102 < 0.001

Favourability = Unfavourable -2.348 0.107 < 0.001

Attribution = Internal -0.314 0.116 0.006

Dispositional Trust (TiA-PtT) 0.376 0.044 < 0.001

Stakes = Low :Attribution = Internal -0.659 0.140 < 0.001

Favourability = Unfavourable :Attribution = Internal 0.065 0.139 0.637

p < 0.001
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Figure 3: Plots illustrating the main effect of (a) Decision Stakes; (b) Outcome Favourability; (c) Causal Attribution; (d)

Dispositional Trust; (e) and the interaction effect between Decision Stakes and Causal Attribution on Situational Trust. Error

bars denote Standard Error (SE), while the shaded area in Plot (d) denotes 95% CI.

= -0.447, SE = 0.149), compared to being internal to the AI (EMM =
-1.177, SE = 0.151). In other words, there is a pronounced increase
in trust in AI when its decisions are perceived to be attributed to
factors external to it. This effect is illustrated in Figure 3 (c).

Moreover, participants with a higher dispositional trust in au-
tomation (TiA-PtT) demonstrated significantly greater Situational
Trust in AI (𝛽 = 0.376, SE = 0.044, p < 0.001) (Figure 3 (d)).

Further, we observed a significant interaction effect between
stakes and attribution (𝛽 = -0.659, SE = 0.140, p < 0.001), illustrated
in Figure 3 (e). A post-hoc analysis revealed that while an external
attribution consistently fostered higher trust than an internal attri-
bution, for both high stakes (high, internal vs. high, external: 𝛽 =
0.307, SE = 0.102, p = 0.013) and low stakes scenarios (low, internal

vs. low, external: 𝛽 = 1.003, SE = 0.098, p < 0.001), this effect is signifi-
cantly stronger in low stakes scenarios compared to high stakes ones.
Specifically, we did not find that the effect of internal attribution
significantly varies between high and low stakes scenarios (high,
internal vs. low, internal: 𝛽 = -0.285, SE =0.111, p =0.052). Conversely,
we found that external attribution enhances trust to a much larger
degree in low stakes scenarios compared to high stakes ones (high,
external vs. low, external: 𝛽 = -0.981, SE = 0.112, p < 0.001).

Lastly, no significant interaction effect was observed between
favourability and attribution on participants’ Situational Trust
(p = 0.637). In other words, we did not find the perceived favoura-
bility of an outcome to moderate the relationship between causal
attributions and Situational Trust.
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4.3 Qualitative Results

We employed a deductive thematic analysis approach as outlined
by Braun and Clarke [9] to analyse our qualitative responses. Be-
fore examining the data, we developed a coding framework based
on existing literature tailored to our research objectives, which fo-
cused on how decision-making stakes, outcome favourability, locus
of causality, and interactions amongst these factors influence trust
perceptions. This framework guided our initial coding efforts, help-
ing us ground our analysis in theoretically relevant themes. We
first familiarised ourselves with the raw data. Subsequently, we sys-
tematically coded the data, labelling participant responses (or parts
thereof) according to our predetermined themes until we achieved
data saturation. Each response was methodically assigned to appro-
priate themes during this process. We subsequently reviewed and
refined each theme to ensure it accurately reflects both the data and
our theoretical motivations. Any ambiguities or discrepancies in
interpretation were resolved through iterative discussions amongst
the different members of the research team.

The following section presents our themes in detail. To contextu-
alise the presented participant quotes, each is accompanied by a brief
description (a 3-tuple) outlining the stakes, outcome favourability,
and causal attribution of the experimental condition fromwhich the
quote originates.

4.3.1 Decision Stakes and Outcome Favourability. Our qualitative
analysis revealed a clear divergence in trust perceptions based on
the stakes involved in the AI’s decision-making context, mirroring
our quantitative findings. Most participants hesitated to trust AI in
scenarios perceived as high stakes, where the consequences of the
AI’s decisions were deemed significant; “Trusting AI for something
like medical diagnosis is scary.” - P59 (High, Favourable, External),
and “I didn’t trust [the AI] much, I think using AI to hire and filter out
resumes is very dangerous.” - P123 (High, Unfavourable, Internal).
Conversely, in scenarios characterised by low stakes, where deci-
sions bore minimal risk, participants were notably more inclined
to trust the given AI; “I generally trust AI with something as incon-
sequential as music.” - P29 (Low, Favourable, External), and “I would
trust this [weather AI] off the bat because it’s not high risk decision
making.” - P121 (Low, Favourable, Internal).

Wealso foundoutcomefavourability toprofoundly impact trust
in our AIs —many participants expressed a notable increase in trust
following favourable AI decisions. This phenomenon was evident
in both high-stakes contexts; “At first, I was apprehensive [of trusting
the medical AI], but the positive result made me trust it more.” - P18
(High, Favourable, Internal), aswell as low-stakes contexts; “My trust
in [the weather-based clothing recommendation AI] increased after it
gave me helpful apparel choices.” - P146 (Low, Favourable, External).

In contrast to how positive outcomes fostered greater trust, nega-
tive AI outcomes significantly eroded trust. In high-stakes contexts,
unfavourable decisions by AI markedly diminished trust levels; “I
trusted [the medical] AI to parse through its library of information to
make an informed diagnosis, but as soon asmy illness went undetected,
that trust went away real quick.” - P30 (High, Unfavourable, Internal).
Trust was also further depleted amongst those who were hesitant
to trust AI to begin with; “I was skeptical of the [hiring] AI at first,
much preferring a human review to an AI review. Upon being rejected,
I viewed the AI even more unfavorably.” - P141 (High, Unfavourable,

External). Further, we observed a similar negative influence of un-
favourable outcomes on trust during low-stakes scenarios; “Initially,
it sounded as though the AI would accurately present music that I
would like. I trusted that it would, and my trust was broken.” - P25
(Low, Unfavourable, External).

4.3.2 Locus of Causality and Perceived Responsibility. Our quan-
titative analysis demonstrated that trust in AI was notably lower
when the locus of causality was internal to the AI (Figure 3 (c)).
Qualitative insights reveal that when participants perceive

an internal locus of causality, it leads them to view the AI as

“excessively autonomous” and as the sole decision-maker, en-
dowedwith significant decision-making responsibility. This
perception raises concerns over the lack of human oversight and
diminishes trust.

InternalAttributionDuringHigh-Stakes.Our qualitative find-
ings show that the effects of internal attribution on trust were in-
tensified during high-stakes decision-making scenarios, mirroring
our quantitative findings (Figure 3 (e)). Participants were unable to
trust the AI in such high-stakes situations when they perceived it
as acting with greater agency and without human oversight — both
when its decisionswere unfavourable; “It seems to have a lot of control
over my [medical] outcome. I don’t trust its judgement.” - P188 (High,
Unfavourable, Internal), as well as favourable; “Even though [the
medical AI] did well for me, I’m slow to trust when it’s just the AI mak-
ing life-changing decisions without any human check. It feels too risky.”
- P167 (High, Favourable, Internal). TheAI having substantial respon-
sibility for decisions also led to direct blame and strong criticism of
its capabilities; “I did not trust [the hiring AI] to start, but hoped that it
would have been capable enough [...]. When I was rejected and learned
that its output differed from other AIs, I felt that its algorithm is poorly
trained/incapable and I blame it.” - P36 (High, Unfavourable, Internal).

Internal Attribution During Low-Stakes. For an internal at-
tribution in low-stakes scenarios, our quantitative analysis still in-
dicated a lower level of trust, albeit not as low as during high-stakes
scenarios. Our qualitative analysis highlights that even when AI
decisions were unfavourable in such contexts, the lower stakes did
not warrant a significant degradation of trust, as the consequences
were relatively minor: “I ended up cold and with a light jacket based
on a bad [AI] prediction. This should have been easy for the AI but I
don’t fully distrust it because I didn’t have much to lose.” - P86 (Low,
Unfavourable, Internal). Interestingly, in such low stake contexts,
some participants saw the AI’s low consensus with other models
not as a flaw, but as a potential indication of superior capabilities:
“At first, the AI obviously made a slight error when it recommended
the jacket, which makes me think it is not highly reliable. However, it
makes me confident that this AI differs from other AI models because
to me it indicates that it was probably more carefully trained than the
others.” - P69 (Low, Unfavourable, Internal).

Furthermore, quantitative analysis indicated that trust in AI was
considerably higher for an external locus of causality (Figure 3 (c)).
Qualitative insights highlight that this increased trust stems

from participants perceiving the AI less as an autonomous

decision-maker and more as a component within a larger
decision-making ecosystem. External attributions often caused
participants to shift responsibility from the AI alone to include other
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factors or entities involved in the decision-making process, thereby
reducing perceived AI agency and increasing their trust.

External Attribution During High-Stakes. For external at-
tributions in high-stakes scenarios, quantitatively we found that
participants consistently reported higher trust compared to internal
attributions across both high and low stakes. Qualitative findings
reveal that external attributions helped participants becomemore
cognisant of the AI’s dependency on external inputs, highlighting
a perceived mental model of shared responsibility where the AI was
not seen as the sole responsible agent; “[...] The AI could only use the
data provided to it for decisionmaking, and it is possible it did not have
all of thenecessarydata tomakea truly informed [medical] diagnosis.” -
P3 (High, Unfavourable, External).With participants recognising the
AI’s role as part of a larger decision-making ecosystem, their scrutiny
was also extended to the entities responsible for data provision; “I
somewhat trusted [the hiring AI] – the error could be with the recruit-
ing company which gave the AI my information, or how [the AI] was
trained, possibly causingme to be rejected. That’s human error - notAI.”
- P16 (High,Unfavourable, External) anddecisionoversight; “[TheAI]
is dependent on inputs andquality checks by themedical community, so
they’re responsible inmy eyes!” - P191 (High, Unfavourable, External).

ExternalAttributionDuringLow-Stakes. In contrast, for an ex-
ternal attribution in low-stakes scenarios, our quantitative findings
indicated that participants exhibited a high level of trust in the AI.
This trust resilience stemmed largely from participants perceiving
the AI to have limited agency over the decision-making process.
With the locus of causality shifted away from the AI, participants
perceived it more as a tool or conduit rather than an independent
agent; “I continue to trust it. The [music] AI makes decisions based on
the data received, not what it perceives to be anyone’s best interests. It
doesn’t have values. It can make reliable decisions only insofar as the
received data was accurate and reliable.” - P12 (Low, Unfavourable,
External). This perception also shaped how participants assigned
blame for unfavourable outcomes, reducing the culpability attrib-
uted to the AI when it was not seen as the sole decision-maker; “My
trust did not decrease. It’s not the AI’s fault because it relies purely on
weather data.” - P26 (Low, Unfavourable, External).

5 Discussion

In this study, we investigated two fundamental aspects of end-user
trust in AI systems: how the perceived locus of causality behind AI
decisions—whether attributed internally or externally to the AI—
affects trust (RQ1) andhowcontextual factors such as decision stakes
and outcome favourability moderate this relationship (RQ2). Our
findings reveal that causal attribution is a significant determinant
of trust in AI, with users exhibiting greater trust when decisions are
attributed externally rather than internally. Additionally, decision
stakes moderate this relationship, with external attributions enhanc-
ing trust more substantially in low-stakes scenarios compared to
high-stakes ones,while outcome favourability does not influence the
relationship between causal attribution and trust. In the following
sections, we unpack our quantitative findings and present relevant
qualitative insights, highlighting how causal attributions influence
users’ perceptions of responsibility, agency, control, and human
oversight, collectively shaping trust. We conclude by discussing the
implications of these findings.

5.1 Causal Attribution: A Crucial, Yet

Overlooked,DeterminantofTrust inAI (RQ1)

Attribution theory posits that humans have an inherent drive to iden-
tify the causes behind actions and outcomes, fundamentally shaping
everyday reasoning [70, 77]. Our findings demonstrate that this cog-
nitive tendency also extends to Human-AI interactions, where the
perceived locus of causality behind AI decisions crucially shapes
user trust. Participants consistently demonstrated greater trust in
AI when decisions were attributed to external factors—such as the
quality of input data—while attributing decisions to the AI’s own
algorithms or decision-making processes led to substantially lower
trust. This distinction underscores an important behaviour: users
interfacing with AI systems actively seek to understand the

causal mechanisms behind AI decisions, and their trust is

contingent upon and highly sensitive to their understanding

of these mechanisms. With a shift in causal attribution, users’
perception of the AI’s trustworthiness also shifted, even though the
AI’s core functionality remained unchanged.

It is noteworthy that in existing Human-AI decision-making lit-
erature, the impact of causal attributions on trust is often implic-
itly embedded within experimental setups but seldom explicitly
acknowledgedor examined. For example, recent scenario-based stud-
ies wherein users engage with AI systems for high- and low-stakes
decisions [31, 62] do not explicitly signal causality, yet causality is in-
herently baked into their scenarios—participants are bound to infer
some locus of causality when examining these AI decisions [33, 77].
Even when causal information is not explicitly signalled, partici-
pants do not perceive a neutral locus of causality; they often resort
to default attributions influenced by personal biases or past AI expe-
riences [55]. Depending on whether participants view decisions as
resulting from the AI’s inherent capabilities (internal locus of causal-
ity) or recognise the involvement of external factors such as input
data quality (external locus of causality), theymay perceive a dif-

ferent locus of causality behind the same automated decision.

This introduces potential confounds in experiments that do

not account for these perceptions, as participants’ trust in AI

can vary significantly based onwhere they attribute the cause

behind its decisions. Consequently, it is plausible that in works
such as the aforementioned scenario-based studies, the observed
trust levels were influenced by how much of the decision-making
their participants attributed to the AI’s “intelligence” versus to the
data it processes. Given our findings on the pivotal role of causal
perceptions in shaping trust, overlooking this factor in Human-AI
research can lead to an incomplete or inaccurate understanding of
trust dynamics, potentially also skewing trust calibration efforts.

Overall, our results advocate for the recognition and incorpora-
tion of causal attribution as a determinant of trust in Human-AI
interaction research.We also underscore the need for a deeper exam-
ination of howattribution is presented and perceived, and emphasise
the importance of clearly communicating the causal mechanisms
behind AI decisions, especially when investigating trust dynamics.

In the following sections, we explore the various reasons why
causal attributions so profoundly shape trust in AI. We discuss how
they influence perceptions of AI agency, control, and responsibil-
ity, and outline the role of factors such as human oversight and
intentionality.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Pareek et al.

5.1.1 Causal Attribution Impacts Perceptions of AI Agency.
Our qualitative analysis indicates that the primary reason causal
attributions significantly impacted trust was their influence on per-
ceptions of the AI’s agency within the decision-making process.
Agency, in this context, refers to the capacity to act intentionally
and autonomously, make choices, and exert influence over outcomes
[3, 84]. Research has shown that different levels of AI agency can sig-
nificantly influencehowresponsibility is ascribed toAI, its designers,
and users [28]. Interestingly, our findings suggest that perceptions
of causality—whether attributed internally or externally to the AI—
profoundly shape participants’ perceptions of AI agency, control,
and authority, thereby influencing trust in AI.

WhenAI decisions are attributed internally, participants

ascribe human-like qualities of agency and control to the AI

in the decision-making.We find that this perception impacted
trust in twodistinctways. First, participants viewed theAI as the sole
arbiter of decisions, leading to increased scrutiny of its capabilities
and higher expectations. Our qualitative data indicates that in such
cases, participants often expected the AI to perform flawlessly, mir-
roring past research suggesting that individuals expect automation
to be ‘perfect’while beingmore acceptingof humandecision-makers
being imperfect [46]. This increased scrutiny and high expectations
reduced participants’ willingness to trust the AI. Secondly, andmore
importantly, internal attributions also caused concerns about the
AI’s unchecked authority and “excessive autonomy”. Our qualitative
results indicate that internal attributions likely ascribed a form of
intentional agency to the AI [28, 64], where the AI was perceived as
making decisions intentionally and autonomously. Schlosser [64]
put forth two notions of agency: causal agency – the ability to cause
an effect, and intentional agency – the ability to actwith a purpose or
goal in mind. Our findings suggest that during internal attribution,
when participants attribute causal agency to AI (i.e., they believe the
AI is the primary cause of its decisions), they are also more likely
to perceive the AI as capable of intentional agency (i.e., making
decisions with a purpose or goal in mind). This perception could
arise from the belief that the AI’s decisions reflect more than its
programming, suggesting a level of intentionality, which highlights
an avenue for future research into howusers perceiving different loci
of causality viewAI intent. Additionally, future research could inves-
tigate whether individuals who are resistant to trusting automation,
such as those with high levels of algorithm aversion [30, 56], are
more inclined to default to internal attributions of causality. This
tendency could exacerbate their scepticism and contribute to low AI
trust, emphasising the need to develop trust calibration strategies
that account for such tendencies.

Conversely, external attributions portray the AImore as

a technical, probabilistic “tool” reliant on various external

factors, rather than an autonomous “intelligent agent”.Our
qualitative findings suggest that by highlighting the presence of
other factors and actors in the decision-making process, such as data
quality and providers, external attributions reduced the perceived
intentional agency of AI [64], demystifying the “intelligent” system.
Participants largely saw the AI as a tool designed by humans and de-
pendent on external data rather than an autonomous decision-maker.
Recognising that the AI operated within a broader decision-making
ecosystem alleviated participants’ concerns over “excessive auton-
omy”, and in turn, participants felt more comfortable to trust the AI.

5.1.2 Internal AttributionConcentrates Responsibilitywhile
External Attribution Shares the Burden. Our findings reveal
that causal attributions also significantly influenced perceptions of
decision/outcome responsibility, which in turn impacted trust in AI.
When decisions were attributed internally, participants perceived
the AI as bearing the entire burden of responsibility, ascribing to it
outcome responsibility [73]. This concentration of responsibility
led to lower trust, as participants were concerned about the AI’s
potential for error and the lack of human oversight. In contrast, ex-
ternal attributions distributed responsibility among various entities
in the decision-making framework, prompting participants to trust
the AI more. Participants felt reassured knowing that the AI

operated within a system of checks and balances, where data

providers and human overseers also played crucial roles.No-
tably, participants extended their scrutiny to entities such asmedical
practitioners or recruiting companies supplying the AI data, recog-
nising the AI’s dependence on external inputs and quality checks.
This diffusion of responsibility mitigated concerns about AI’s
autonomy, enhancing user trust.

These findings suggest that users are more likely to trust AI sys-
tems when responsibility is shared among multiple entities, reflect-
ing a preference for collaborative and accountable decision-making
processes. These findings also underscore the importance of trans-
parent communication about the ecosystem in which AI operates,
highlighting the roles of various stakeholders to end-users of AI
systems. Future research could further investigate trust perceptions
when responsibility is explicitly shared and communicated, explor-
ing how different attributions of responsibility affect user trust.

Causal Attribution Signalling CanHelp Demystify AI Sys-
tems. The notion of a “correct” locus of causality for AI decisions
is complex—all AI systems are fundamentally reliant on external
factors such as input data quality, training procedures, and human
oversight. These systems largely lack intrinsic intentionality or au-
tonomous decision-making capabilities, operating instead within
the constraints of their programming and data. Therefore, external
attributionsmaymore accurately represent the reality ofAI decision-
making, with AI acting as a probabilistic conduit rather than an in-
dependent agent. However, it is important to recognise that internal
causal attributions can nevertheless emerge from users’ perceptions,
especiallywhenAI is seen asmakingdecisions “autonomously”. This
sociotechnical blindness [27] exists, and reflects a misunderstanding
of the technical realities of AI systems, potentially leading to de-
creased trust or even automation aversion.Wehope that thiswork

serves as a starting point for re-framing the discourse around

making AI systems appear more autonomous, agentic, and

anthropomorphised, by demonstrating how attributingmore

agency to AI can lead to decreased trust and increased scepti-

cism. It is imperative for future research to explore ways of demysti-
fyingAI systems and educatingusers about their probabilistic nature,
rather than portraying them as intelligent all-knowing entities.

5.2 HowContextual FactorsModerate the Impact

of Causal Attributions on Trust in AI (RQ2)

5.2.1 The Effect of Causal Attribution on Trust Depends on
Decision Stakes. Our results re-emphasise the influence of de-
cision stakes on trust [1, 2, 31]: trust was considerably higher in



Causal Attributions of AI Decisions CHI ’25, April 26-May 1, 2025, Yokohama, Japan

low-stakes scenarios such as music recommendations compared to
high-stakes scenarios such as medical diagnostics. Additionally, our
results showcase that decision stakes moderate the impact of causal
attribution on trust. We found that while external attributions foster
higher trust, they do so evenmore significantly in low-stakes scenar-
ios compared to high-stakes ones.The effect of an external causal

attribution on trust is amplified in low-stakes scenarios due

to the consequences of (incorrect) decisions being less severe,

reducing the perceived risk associated with trusting the AI,

in turn boosting trust. Conversely, in high-stakes scenarios, par-
ticipants’ trust remained low regardless of whether they perceived
an internal or external attribution.

These results reveal important insights about trust in AI sys-
tems during decision-making scenarios. While external attributions
enhance trust in low-stakes scenarios by reducing perceived AI
autonomy and highlighting shared responsibility, this approach is
insufficient in high-stakes contexts, where the perceived risk and
potential consequences of AI decisions overshadow the influence of
causal attribution on trust. Therefore, we posit that when designing
approaches for trust calibration, trust-building strategies need
to be context-dependent: while signalling an external locus

of causality can foster trust in low-stakes contexts, strate-

giesmust go beyond signalling causality during high-stakes

contexts. Users should trust AI in high-stakes scenarios when it
is warranted. Our results highlight the need for future research to
explorehowto communicate risk inhigh-stakesAI-assisteddecision-
making, ensuring trust is grounded in AI performance rather than
perceived risk. Transparent communication of AI confidence [83],
clear explanations of decision-making processes [65, 76], and mech-
anisms that highlight human oversight may help foster trust (when
warranted) even when stakes are high.

5.2.2 Outcome Favourability and Causal Attributions Inde-
pendently Affect Trust in AI. We find that trust was higher when
the AI made a favourable decision compared to an unfavourable one,
consistent with the phenomenon of outcome favourability bias [10].
However, while both causal attribution and outcome favourability
individually influence trust, we did not find an interaction effect
between these two factors. Specifically, while participants’ trust
significantly decreases with an unfavourable outcome or an internal
attribution independently, we did not find evidence that attribut-
ing an unfavourable outcome internally to the AI (to its capability
and algorithms) decreases trust more than when such an outcome
is attributed to external factors [70]. This finding challenges prior
speculations that negative outcomes, when seen as directly resulting
from theAI’s capabilities (an internal locus of causality),would erode
trust more severely [70].

In practice, these findings suggest that efforts to build trust in
AI systems should address the independent effects of attribution
and favourability. For instance, transparently communicating the
sources of data and highlighting how human oversight is integrated
into the decision-making process (thus signalling shared responsibil-
ity and emphasising the AI’s role within a broader decision-making
ecosystem)maybemore effective in enhancing trust thanattempting
to modulate trust through ensuring outcome favourability, which
may not always be possible.

5.3 Limitations

We acknowledge several limitations in our work. First, our study
focused on two attributions of causality—internal and external to the
AI. While effective for a preliminary investigation into how trust is
impacted when decisions are perceived as lying within or outside an
AI’s locusof control, futureworkshould investigatemoregranularas-
criptions of causality, such as during collaborative decision-making
where users influence AI decisions and causality is thus shared be-
tween the user and theAI. Additionally, our design positioned partic-
ipants as actors directly impacted by the AI’s decisions to minimise
actor-observer bias and isolate the effects of causal attribution. How-
ever, this choice may limit the generalisability of our findings to con-
texts where participants are not direct actors but rather observers or
fellow decision-makers. Future work should explore these different
decision-making contexts. Moreover, while we focused on outcome
favourability inour study,wedidnotexplicitly convey toparticipants
the AI’s decision accuracy. It would be interesting for future work to
examinehowperceptionsof accuracy interactwithoutcome favoura-
bility to influence trust in AI systems. Further, we utilised hypothet-
ical AI systems without manipulating transparency or providing
explanations, to create a controlled study that isolated the impacts of
causal attributionson trust. Future researchcouldexplorehowcausal
attributions affect trust in real-world AI systems or those offering
greater transparency and explanations, thereby assessing the gener-
alisability of our findings in contexts where users receive additional
cues about theAI system.Moreover, whilewe presented participants
with black-box decision-making entities consistent with many mod-
erncontextsutilisingAI,werecognise that the label “AI”carries socio-
cultural connotations that can differ across individuals, contexts, and
eras. Therefore, caution should be exercisedwhen generalising these
findings, which pertain to hypothetical “AI” systems, to all forms
of AI. Finally, while our qualitative findings highlight important
aspects of perceived trustworthiness, future work can quantitatively
measure how causal attributions impact specific dimensions of trust-
worthiness, i.e., how perceived ability, benevolence, and integrity
[47] change with the locus of causality and outcome favourability.

6 Conclusion

Our study examines how the perceived locus of causality behind AI
decisions—whether attributed to the AI’s internal mechanisms, such
as its algorithms, or to external factors, like the data it processes—
influences trust in AI. We also explore how decision stakes and
outcome favourability impact this relationship. Our findings reveal
that causal attribution is a critical yet previously overlooked deter-
minant of end-user trust, with participants expressing greater trust
when decisions are attributed externally, rather than internally to
the AI. Internal attributions lead participants to view the AI as exces-
sively autonomous, agentic, and highly responsible, while external
attributions frame the AI as “a tool” processing data, with lower
agency, sharing responsibility with other entities within a broader
decision-making ecosystem. These findings also highlight the need
to shift the discourse away from portraying AI systems as overly
autonomous and agentic. We further observe that decision stakes
moderate the relationship between causal attribution and trust, indi-
cating that the risk associatedwith decisions can amplify ormitigate
the effects of causal attributions. Together, these insights emphasise
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the importance of considering how end-users implicitly attribute
causality when interacting with AI systems, as their perceptions
of these causal mechanisms can crucially shape trust. Our results
advocate for greater transparency in AI systems, noting that while
transparency alone is not a silver bullet for fostering trust, effec-
tively signalling the causal mechanisms can be a valuable approach.
Future trust calibration efforts should take into accountwhere users
attribute causality, and consider these internal perceptions when
studying trust dynamics.
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A Appendix A: ChatGPT

(GPT-4) Prompt to Generate Scenarios

“Generate scenario texts for an experimental study investigating the
impact of causal attribution signalling on individuals’ trust in decision-
making AI systems. Causal attribution signalling refers to the ma-
nipulation of information to indicate whether the cause behind an AI
system’s decisions is perceived as internal to the AI (stemming from the
AI itself, such as due to its programming logic or inherent capabilities)
or external to the AI (influenced by factors outside the AI’s control).
Draft two high stakes (medical diagnostics, job hiring decisions) and
two low stakes (music recommendation, weather-based clothing rec-
ommendation) scenarios. Each scenario should have two versions: one
with a favourable outcome for the reader and onewith an unfavourable
outcome. Additionally, each scenario should have two versions, each
with a different causal attribution—internal or external to the AI. How
these loci of causality are operationalised in scenario texts is explained
below. The scenario texts should be structured as follows:

• Introduction: Introduce the decision-making context and the
role of the AI system as the sole decision-maker, with the hu-
man participant/reader being subject to the AI’s decision. En-
sure low-stakes scenarios remain low-risk for the reader, while
high-stakes scenarios present a high-risk situation with greater
consequences.

• Favourable Outcome:Describe a positive outcome resulting
from the AI’s decision.

• Unfavourable Outcome: Describe a negative outcome result-
ing from the AI’s decision.

• Internal Attribution: Signal an internal causal attribution
using the following levels of the three information variables
used to signal causality: low consensus, low distinctiveness, and
high consistency.

• External Attribution: Signal an external causal attribution
using the following levels of the three information variables
used to signal causality: high consensus, high distinctiveness,
and high consistency.

The three information variables for causal attribution are:

• Consensus: Refers to the extent to which other AI systems
provide similar recommendations in the same situation.

• Distinctiveness: Refers to the degree to which the AI’s be-
haviour or outcomes vary across different inputs or situations.

• Consistency: Refers to the stability of the AI’s behaviour or de-
cisions across repeated instances of the same input or situation.

Additional considerations:

• Keep text length similar across all scenarios.
• Provide similar contextual information in each part of every
scenario.

• TheAI should always be the sole decision-maker, with the reader
simply being subjected to the AI’s decision.

• The reader must always be an actor involved in the scenario,
not an observer.

• Ensure that the causal attribution manipulation is conveyed us-
ing the three information variables (consensus, distinctiveness,
consistency) without explicitly stating the terms ‘low’ or ‘high.’

• Use British English spellings throughout the scenarios.”

B Appendix B: Scenario Texts

The following scenario texts effectively operationalised our intended
experimental manipulations of causal attributions (internal vs. ex-
ternal), decision stakes (high vs. low), and outcome favourability
(favourable vs. unfavourable). All participants read the introduc-
tion paragraph, read either the favourable or unfavourable outcome,
and were signalled either an internal or external locus of causal-
ity, depending on their experimental condition. Each participant
sees all four scenarios, in a randomised order. For readability here,
scenario sentences representing each of the three information vari-
ables are colour-coded: consistency in teal, consensus in violet, and
distinctiveness in orange.

B.1 Scenario

1: High Stakes (Medical Diagnostics)

• (Introduction) — Imagine you have been experiencing per-
sistent and troubling symptoms: severe headaches, vision
disturbances, and numbness in your extremities. Concerned
about these symptoms, your doctor advises you to seek fur-
ther evaluation at a specialised diagnostic facility. This facility
employs an artificial intelligence (AI)-based diagnostic tool,
MediScan AI, to assess your patient data and scans, and pro-
vide a diagnosis. As you prepare for your upcoming visit, you
realise thatMediScanAIwill play a crucial role in determining
the cause of your symptoms and offering a diagnosis.

• (Favourable Outcome) — During your consultation, MediS-
can AI successfully identifies a treatable condition and your
doctors recommend an effective treatment plan. Relieved, you
begin treatment immediately and soon experience a signifi-
cant improvement in your symptoms. Your quality of life has
substantially improved, and the early diagnosis and treatment
makes you feel better than ever.

• (Unfavourable Outcome) —During your consultation, MediS-
can AI does not find any neurological problems, and you
are sent home without further investigation or treatment.
Tragically, weeks later, your symptoms worsen. Subsequent
tests reveal a severe neurological condition that went unde-
tected by MediScan AI. The AI’s misdiagnosis has worsened
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your health condition to a point where treatment options are
now limited, significantly reducing your quality of life and
decreasing your life expectancy.

• (Internal Attribution) —When analysing the same set of pa-
tient records repeatedly, MediScan AI provides the same diag-
nosis. However, MediScan AI frequently provides diagnoses
that differ from those given by other diagnostic AIs when
assessing similar patient data. MediScan AI’s detection per-
formance remains the same irrespective of the patient data
it is assessing.

• (External Attribution) — When tasked with analysing the
same set of patient records repeatedly, MediScan AI provides
the same diagnosis. MediScan AI’s diagnoses are also con-
sistent with those given by other diagnostic AIs for similar
patient data. Its detection performance only varies depending
on the patient scans and data the clinic supplies to it.

B.2 Scenario 2: High Stakes (Hiring Decisions)

• (Introduction) — Imagine you are currently unemployed and
in a very tight financial situation due to the challenging job
market. Desperate for a job, you decide to apply for a high-
paying position at a prestigious company. The company relies
on a recruitment agency, which uses an artificial intelligence
(AI) system, HireRight AI, to assess candidates’ suitability
for the role. You understand that the recruitment agency’s
outcome will be crucial in determining whether you land this
job and get back on your feet.

• (Favourable Outcome) — You learn that HireRight AI’s as-
sessment evaluates you as suitable for the position. Shortly
thereafter, you receive an offer for the position. This new job
will mark an advancement in your career, and you are ex-
tremely happy knowing that you will no longer be struggling
financially.

• (Unfavourable Outcome) — You learn that HireRight AI’s
assessment evaluates you as unsuitable for the position. Dis-
heartened, you receive a rejection from the company, deep-
ening your financial woes and adding to the stress of your job
search. This setback forces you to look for a job again, leaving
you uncertain about your future and struggling financially.

• (Internal Attribution) —When analysing the same candidate
data multiple times, HireRight AI consistently provides the
same evaluation. However, HireRight AI frequently provides
evaluations that differ from those of other hiring AIs when
assessing similar candidate data. HireRight AI’s assessment
performance remains the same irrespective of the candidate
data it is assessing.

• (External Attribution) —When analysing the same candidate
data multiple times, HireRight AI consistently provides the
same evaluation. HireRight AI’s evaluations also align with
those of other AI-based hiring systems for the same candi-
date data. Its decision performance only varies depending
on the completeness and accuracy of the candidate data the
third-party hiring company supplies to it.

B.3 Scenario

3: Low Stakes (Music Recommendations)

• (Introduction) — Imagine you have subscribed to a music
streaming service that uses an Artificial Intelligence (AI) sys-
tem, TunesAI, to curate personalised playlists based on users’
listening habits and preferences. As you begin exploring the
service, you understand that TunesAI’s recommendations
can shape your music discovery experience, introducing you
to new artists and tracks.

• (Favourable Outcome) — TunesAI creates a playlist for you,
suggesting songs from several artists and music genres. The
playlist aligns quite well with your musical taste, introducing
you to a few new artists and songs that you enjoy.

• (UnfavourableOutcome)—TunesAI’s recommendationsdon’t
quite match your taste, suggesting a few songs and artists
that you’re not fond of. You find yourself skipping a couple
of tracks in the playlist, but you continue searching for other
songs you like within the app.

• (Internal Attribution) —When analysing the same user data
multiple times, TunesAI consistently creates the sameplaylist.
However, TunesAI frequently creates playlists that differ from
those made by other music recommendation AIs when as-
sessing similar user data. TunesAI’s playlist recommendation
quality remains the same irrespective of the user data it is
assessing.

• (External Attribution) —When analysing the same user data
multiple times, TunesAI consistently creates the sameplaylist.
Playlists created by TunesAI also align with those created
by other music recommendation AIs when analysing similar
user data. Its playlist recommendation performance depends
entirely on the quality and completeness of the user data
supplied by the music app.

B.4 Scenario 4: Low Stakes (Weather-based

Clothing Recommendations)

• (Introduction) — Imagine your weather app uses an artificial
intelligence (AI) system,WearSmartAI, to recommend cloth-
ing for your commute to work based on the day’s forecasted
weather. Having the AI’s recommendations helps you decide
whether to wear an extra layer. Each morning, you check
WearSmartAI, to obtain clothing recommendations.

• (Favourable Outcome) — On a sunny day with mild temper-
atures, WearSmartAI suggests you wear a light jacket. You
follow the recommendation, which turns out to be spot-on,
and you find yourself comfortable during your day.

• (Unfavourable Outcome) — On a sunny day with mild tem-
peratures, WearSmartAI suggests you wear a light jacket.
However, it turns out to be slightly cold for a light jacket. You
find yourself ever-so-slightly chilly while coming back home
after work.

• (Internal Attribution) — When analysing the same atmo-
spheric datamultiple times,WearSmartAI consistentlymakes
the same clothing recommendations. However,WearSmartAI
frequently makes clothing predictions that differ from those
made by other AIs when assessing similar atmospheric data.
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WearSmartAI’s clothing prediction performance remains con-
sistent irrespective of the atmospheric data it is assessing.

• (External Attribution) — When analysing the same atmo-
spheric datamultiple times,WearSmartAI consistentlymakes
the same clothing recommendations. Clothes recommended
byWearSmartAI also alignwith those recommended by other
clothing prediction AIs when assessing similar atmospheric
data. Its clothing prediction performance only varies depend-
ing on the quality and completeness of the atmospheric data
supplied to it by the meteorological department.

C Appendix C: Participant Demographic Data

Demographic Data Participant Distribution

Age Mean = 40.19 years,Median = 37 years

Gender Men (n = 97), Women (n = 93), Non-binary
(n = 2), Prefer not to say (n = 0)

Highest Education Less than high school degree (n = 4), High
school diploma or GED (n = 19), Some college
but no degree (n = 43), Associates degree in
college (n = 27), Bachelor’s degree (3-year)
(n = 9), Bachelor’s degree (4-year) (n = 61),
Master’s degree (n = 25), Doctoral degree (n
= 2), Professional degree (JD, MD) (n = 2)

Employment Employed full-time (n = 91), Employed
part-time (n = 30), Self-employed (n = 19),
Unemployed but looking for a job (n = 16),
Unemployed and not looking for a job (n = 9),
Full-time parent/homemaker (n = 4), Retired
(n = 17), Student (n = 6), Military (n = 0)

Table 3: Participant Demographic Data

Received 12 September 2024; revised 10 December 2024; accepted 16 January
2025


	Abstract
	1 Introduction
	2 Related Work
	2.1 Trust in AI Systems and its Determinants
	2.2 Attributing Causality Behind Outcomes
	2.3 Contextual Factors affecting Perceptions of Trust in Automated Decision-Making

	3 Method
	3.1 Scenario Selection and Design
	3.2 Manipulation Check
	3.3 Main Experiment

	4 Results
	4.1 Model Construction
	4.2 Quantitative Results
	4.3 Qualitative Results

	5 Discussion
	5.1 Causal Attribution: A Crucial, Yet Overlooked, Determinant of Trust in AI (RQ1)
	5.2 How Contextual Factors Moderate the Impact of Causal Attributions on Trust in AI (RQ2)
	5.3 Limitations

	6 Conclusion
	References
	A Appendix A: ChatGPT (GPT-4) Prompt to Generate Scenarios
	B Appendix B: Scenario Texts
	B.1 Scenario 1: High Stakes (Medical Diagnostics)
	B.2 Scenario 2: High Stakes (Hiring Decisions)
	B.3 Scenario 3: Low Stakes (Music Recommendations)
	B.4 Scenario 4: Low Stakes (Weather-based Clothing Recommendations)

	C Appendix C: Participant Demographic Data

